

Report Limited Phase 2 Environmental Investigation 184-192 Restwell Road, Prairiewood NSW

22 OCTOBER 2015

Prepared for GJW Consultancy Pty Ltd

PO Box 3197 St Pauls LPO NSW 2031

Proj # SES_424

Approval:

Adam Sullivan Principal Scientist BSc, PG Cert. Env. Law Sullivan Environmental Sciences Pty Ltd

PO Box 5248 Turramurra NSW 2074 Australia

T: 0400 500 264

Date: Reference: Status: 22 October 2015 SES_424 Final

© Document copyright of Sullivan Environmental Sciences Pty Ltd

No use of the contents, concepts, designs, drawings, specifications, plans etc. included in this report is permitted unless and until they are the subject of a written contract between Sullivan Environmental Sciences Pty Ltd and the addressee of this report. Sullivan Environmental Sciences Pty Ltd accepts no liability of any kind for any unauthorised use of the contents of this report and Sullivan Environmental Sciences Pty Ltd reserves the right to seek compensation for any such unauthorised use.

Document delivery

Sullivan Environmental Sciences Pty Ltd provides this document in either printed format, electronic format or both. Sullivan Environmental Sciences Pty Ltd considers the printed version to be binding. The electronic format is provided for the client's convenience and Sullivan Environmental Sciences Pty Ltd requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the Commonwealth Electronic Transactions Act (ETA) 2000.

Where an electronic only version is provided to the client, a signed hard copy of this document is held on file by Sullivan Environmental Sciences Pty Ltd and a copy will be provided if requested.

Table of Contents

Executive	Summaryiii
1 Introduc	tion1
1.1	Objectives 1
1.2	Scope of Work 1
1.3	Regulatory Framework1
2 Site Info	rmation3
2.1	Identification and Land Zone3
2.2	Site Features
2.3	Environmental Setting 4
3 Site Hist	tory7
3.1	Aerial Photography7
3.2	Section 149 Certificate9
3.3	Land Titles9
3.4	WorkCover DG Search
3.5	Contaminated Land Register and Notifications9
3.6	Contamination Issues10
4 Soil Inve	estigation Methodology11
4.1	Soil Sampling11
4.1.1	Soil Sample Analysis12
4.2	Soil Investigation Criteria12
4.3	Quality Assurance and Quality Control14
5 Results	and Discussion15
5.1	Field Observations15
5.2	Soil Analytical Results and Discussion15
5.3	Quality of Analytical Data15
6 Conclus	ions and Recommendations17
7 Referen	ces19
8 Limitatio	ons21

Tables

Table 2-1	Registered Groundwater Bores Information	4
Table 3-1	Historical Aerial Imagery	7
Table 3-2	Summary of Land Title Information	9
Table 4-1	Soil Sampling Works Summary	11
Table 5-1	Validation of Data Quality	16

Appendices

Appendix A	Figures
Appendix B	Results Tables
Appendix C	Logs
Appendix D	Site Photos
Appendix E	Aerial Imagery
Appendix F	Section 149 Certificate
Appendix G	Land Title Records
Appendix H	WorkCover Dangerous Goods Licence Search
Appendix I	Field Sheets and Calibration Records
Appendix J	Laboratory Analytical Reports

Executive Summary

Sullivan Environmental Sciences Pty Ltd (Sullivan-ES) was engaged by GJW Consultancy Pty Ltd (GJW) to undertake a Limited Phase 2 Environmental Investigation (Limited Phase 2) at the property located at 184-192 Restwell Road, Prairiewood NSW; henceforth referred to as 'the site'.

The site is currently owned by the Calabria Community Club Ltd and used as a sports field and club house amenities. The site is earmarked for redevelopment to construct a multi-storey apartment building with basement car parking.

The objective of the Limited Phase 2 was to conduct an appraisal of the current and historical site activities, assess the potential for contamination from those activities, and verify, through limited soil sampling, if historical or current activities have adversely impacted the site soil conditions. The scope of work for the Limited Phase 2 consisted of conducting a search and review of aerial photographs, section 149 certificates, land title information, WorkCover dangerous goods licensing, registered groundwater bores, NSW EPA contaminated sites register, soil and geological maps, the Fairfield Local Environmental Plans (LEPs), and acid sulfate soils maps. A detailed site inspection was undertaken to visually record site conditions and its surrounds, followed by a program of soil sampling that consisted of:

- 11 x test pits and soil sampling along stockpiled soil mounds located along the eastern and southern site boundaries.
- 10 x hand augered soil bores located in positions of historical activities and operations.
- Chemical analysis of 20 soil samples from various locations across the entire site for a suite of chemicals commensurate with potential contamination from current and historical activities.

Based on the findings of this Limited Phase 2, Sullivan-ES make the following conclusions:

- The site has had limited exposure to historical activities that may have caused contamination, which correlates well with soil analytical results showing that the site soils are of relatively good quality and meet the land use criteria for the proposed development. As such, the site soils are suitable for the proposed land use as a multi-storey residential apartment.
- Asbestos was detected at one location (TP6B_0.4m) in the stockpiled soil mounds. This impact is considered a localised impact given that asbestos was not detected anywhere else nor was asbestos containing materials visually observed anywhere.
- Apart from the localised detection of asbestos, the quality of soil within the mounds meets the land use criteria and would be suitable for use onsite, however, the soil is mixed with anthropogenic wastes and extraneous materials which are unsuitable to remain onsite. These waste materials should be screened and segregated from the soil mounds for offsite recycling or disposal.
- Works required to characterise or ameliorate the soil mounds, such as segregating anthropogenic waste or removing asbestos, should be the subject of a waste management plan (WMP) to be incorporated within construction management plans for the new development. The WMP should include details of sampling for waste classification purposes and management options to reuse, reduce or dispose of the waste materials including asbestos wastes. Sampling for waste classification purposes should considered the presence of waste materials existing beyond the southern site boundary and be undertaken following the NSW DECCW Waste Guidelines 2009 and the ASC NEPM 2013 guidelines.

This Executive Summary is subject to the Limitations of the report as stated in Section 8.

Introduction

Sullivan Environmental Sciences Pty Ltd (Sullivan-ES) was engaged by GJW Consultancy Pty Ltd (GJW) to undertake a Limited Phase 2 Environmental Investigation (Limited Phase 2) at the property located at 184-192 Restwell Road, Prairiewood NSW; henceforth referred to as 'the site'. The location of the site is shown on Figure 1 (Appendix A). The general layout of the site is shown on Figure 2 (Appendix A).

The site is currently owned by the Calabria Community Club Ltd and used as a sports field and club house amenities. The site is earmarked for redevelopment to construct a multi-storey apartment building with basement car parking.

1.1 Objectives

The objectives of the Limited Phase 2 was to:

- conduct an appraisal of the current and historical site activities;
- assess the potential for land contamination from those activities; and
- verify, through limited soil sampling, if historical or current activities have adversely impacted the site soil conditions.

1.2 Scope of Work

The following presents the scope of work conducted for the Limited Phase 2.

- Reviewing available records and information relevant to the site including:
 - o Historical aerial photographs
 - WorkCover Dangerous Goods Licensing
 - o Section 149 certificates and available Council building and development works
 - o Land titles
 - o Registered groundwater bores
 - o NSW EPA contaminated land registry
 - o Environment protection licensing
- Conducting a detailed site inspection to document current site conditions and surrounding environments.
- Conducting field sampling of soils by:
 - o Reviewing all Dial-Before-You-Dig service plans
 - Excavating and sampling of soils from a total of 11 test pits along the length of a soil mound
 - Hand augering and sampling of soils from a total of 10 bore holes targeted at areas of concern.
- Conducting laboratory analysis of collected soil samples.
- Preparing a Limited Phase 2 Environmental Investigation report in consideration of the NSW EPA Guidelines for Consultants Reporting on Contaminated Sites, 1997 (the Reporting Guidelines), the State Environmental Planning Policy 55 (the SEPP55), and the National Environment Protection (Assessment of Site Contamination) Measure 2013 (the ASC NEPM 2013).

1.3 Regulatory Framework

The Limited Phase 2 was prepared in accordance with the following regulatory framework and guideline documents:

1 Introduction

- Contaminated Land Management Act 1997 (CLM Act).
- State Environmental Planning Policy No.55 Remediation of Land 1998 (SEPP55).
- NSW EPA Guidelines for Consultants Reporting on Contaminated Sites, 1997 (OEH, 2011).
- National Environment Protection (Assessment of Site Contamination) Measure 2013 (ASC NEPM 2013).

Site Information

The following sections were compiled from:

- Information provided by CJW.
- The detailed site inspection undertaken by Sullivan-ES on 18 September 2015.
- Published Australian geology and topographic maps.
- NSW Department of Primary Industries Water (DPI Water) groundwater database.
- Fairfield Local Environmental Plan (LEP) 2013.

2.1 Identification and Land Zone

The site is a trapezium shape and is approximately 1.4 hectares (14,000m²) in area and legally identified as Lot 1 in DP1175636. This new legal boundary has recently been registered (on 31 August 2015) as the result of the subdivision of the previous parcel known as Lot 7 section E in DP6934.

In accordance with the Fairfield LEP 2013 (Land Zoning Map - Sheet LZN_011), the land use zone of the site is <u>B4 Mixed Use</u>.

2.2 Site Features

A general site layout is presented on Figure 2 in **Appendix A.** Site photographs taken during the site inspection are presented in **Appendix D**.

Site Description

The site is predominately grassed with concrete slabs covering the entry driveway and central car parking area. The main features of the site comprise a main building used as a sports clubhouse, and a single level residential building. Both buildings are constructed of brick with either tiled or metal sheet roofing. A small metal garden shed is located south of the residential building, while another small metal shed is located at the sites south western corner and used as a chicken coop. A shipping container is located south of the clubhouse. The remainder of the site consists of a sports oval and open space areas. The site boundary bisects the sports oval and therefore only the eastern part of the oval is included within the subject of this Limited Phase 2. At the time of the site inspection the site was being used as a car parking lot.

An elongated mound of soil is present along the eastern and southern boundary. It is approximately 150m in length and varies in height and width along its extent. This mound mainly comprises soil material however the soil is mixed with general extraneous materials and anthropogenic wastes. Some examples of the observed wastes includes: concrete boulders, broken bricks, scrap metal, plastic bags, glass and plastic bottles, metal frames, metal/plastic chairs, wire, fabric and cloth offcuts, tyres, a shopping trolley, old clothes line frame, plastic mesh, timber, rubber hoses, foam, cardboard, chunks of bitumen,

The southern boundary is an embankment that drops away steeply to the adjoining riparian zone land (water course area). The definition of the southern boundary is not known as there is no fence line to define this boundary. The soil mounds appear to encroach this boundary and may go further down the embankment.

Surrounding Land

The site is bordered by the following land uses:

• North – Restwell Road then a shopping complex.

2 Site Information

- South Open space used as a riparian zone (water course).
- East Community youth building and the riparian zone.
- West Sports oval then onto the T-Way public bus route roads.

2.3 Environmental Setting

Topography and Drainage

The site is relatively flat and sits at approximately 33m above sea level (AHD – Australian Height Datum). Surface water presumably infiltrates the unsealed surfaces or drains from the roof guttering and the ground surface directly into stormwater inlet pits.

Geology

The site is located on the geological formation of Triassic period Bringelly Shale lithology of the Wianamatta Group. The shales consist of shale, carbonaceous claystone, claystone, laminite, fine to medium grained lithic sandstone, rare coal and tuff. The sites paleo-environment is documented as alluvial and estuarine. (Ref: Penrith 1:100,000 Geological Series Sheet 9030 (edition 1) 1991, NSW Department of Minerals and Energy).

Soil Type

The soil landscape map shows that the underlying soils at the site are of the Blacktown soil landscape group (NSW OEH website – eSPADE). This type of soil group has the following traits:

- <u>Landscape</u> gently undulating rises on Wianamatta Group shales. Local relief to 30 m, slopes usually >5%. Broad rounded crests and ridges with gently inclined slopes. Cleared Eucalypt woodland and tall open-forest (dry schlerophyll forest).
- <u>Soils</u> shallow to moderately deep (>100 cm) hard setting mottled texture contrast soils, red and brown podzolic soils on crests grading to yellow podzolic soils on lower slopes and in drainage lines.
- <u>Limitations</u> localised seasonal waterlogging, localised water erosion hazard, moderately reactive highly plastic subsoil, localised surface movement potential.

Groundwater

A review of the DPI Water groundwater database showed that the closest registered groundwater bore is approximately 1km to the east within the grounds of the Fairfield City Golf Course. The licence for this bore has been cancelled. Details of the registered bore are provided below.

Table 2-1 Registered Groundwater Bores Information

Bore ID	Date	Distance/Direction to site	Depth and SWL ¹	Purpose
GW031660	1965	Approx. 1km/east	152m / 1.8m	Irrigation

(1) Standing Water Level

2 Site Information

Groundwater is expected to be relatively deep although should be within 20m of the ground surface. The inferred direction of groundwater flow is expected to be toward the south east in the direction of the Georges River system.

Acid Sulfate Soils

In accordance with the Fairfield LEP 2013 - Combined Local Map 1 - Acid Sulfate Soils/Unstable Lands, there is no planning information that applies to the site for acid sulfate soils therefore these soil types are very unlikely to exist at the site.

3

The following was sourced from information provided in:

- Historical aerial photographs
- Google Earth historical imagery
- Section 149 planning certificates (Section 149)
- Land title deeds
- WorkCover Dangerous Goods Licences
- NSW EPA Contaminated Lands Register and Notifications.

3.1 Aerial Photography

The table below presents the details of observations made from each aerial photograph reviewed. Historical aerial imagery is presented in **Appendix E**.

Table 3-1 Historical Aerial Imagery

Year	Details
1930 (black & white)	The site is visible as a rectangular parcel and is being used for crop farming purposes. Crop fields are visible across all areas of the site. A small building (farmhouse?) is present in the central north area. A creek (or similar water course) is visible entering the site halfway along its western boundary and exiting its eastern boundary at the junction of the southern diagonal boundary line. All surrounding lands are being used for farming. Extensive areas of native
	bush are visible in this photo.
1951 (black & white)	The northern half of the site is being used for farming purposes with large areas visible as cultivated land in the northwest and northeast corners. The small farmhouse building exists with additional structures and a large farm shed has been constructed in the north east area. The creek line is prominent in this photo and bisects the site along the same alignment as the previous photo. A dam is visible offsite on the upstream side (west) of the creek. The southern area of the site (south of the creek) is being used as pasture land. Surrounding areas remain predominantly used for farming purposes. Thinning of the native bush in the wider region is apparent in this photo.
1961 (black & white)	The site appears relatively unchanged and used for farming purposes. A large shed building has been erected in the central portion of the southern half of the site surrounded by pasture land. The creek exists as a scoured depression following the same alignment as previous years. The offsite dam also exists to the west. Surrounding areas appear relatively unchanged to the previous decade.
1970 (black & white)	The site structures are largely unchanged however there appears to be no cultivated areas on site. The residential house that remains today has been

Year	Details				
	erected at the northern boundary. A row of cars is visible parked on the northern side of the creek.				
	The offsite dam to the west appears to be in the process of being infilled, while earthworks are visible on land to the east. Major clearing of bushland has occurred and the golf course is now visible to the east of site.				
1982	Major changes have occurred onsite and within the immediate surrounds. All farm buildings have been removed. The residential house remains along with a small shed near where the former farmhouse was positioned. The creek has been infilled and realigned as a water course as it exists today.				
(colour)	Much of the surrounding areas are becoming urbanised and have been cleared of bush with only small pockets remaining. Residential homes have been constructed to the west of the site. Earthworks are occurring to the north of the site.				
1994	The site exists as it does today with the sports clubhouse built in the central area, the residential house at the northern boundary and the sports oval (half of which encroaches the western boundary). The central area has not been extensively covered by concrete as it is today. There exists 20 odd small stockpiles of soil onsite east of the clubhouse.				
(colour)	Much of the broader area surrounding the site has been urbanised. The community youth facility has been built east of the site. The riparian zone is prominent along the southern boundary. The shopping centre has been built north of the site.				
Dec 2004 – Google Earth image (colour)The site is being used for car parking. Cars are parked along access road that enters the site from Restwell Road and runs northern side of the clubhouse. A small shed is present near t of the clubhouse also. There appears to be a fence line erected the residential house area and the eastern boundary from the and clubhouse. No other visible changes have occurred onsite					
Aug 2005 - Google Earth image (colour)The site is no longer being used to park cars. The fence line that se the residential house is prominent in this photo. No other change visible.					
Mar 2007 - Google Earth image (colour)	Scouring or stockpiling of soil is visible along the southern boundary. Stockpiled mounds are present along the eastern boundary overgrown with vegetation. Much of the surrounding areas remain unchanged.				
Nov 2012 Google Earth image (colour)Sealing with concrete of the central areas of the site has occ Earthworks, stockpiling or scouring of the ground is visible at the e boundary. Visible materials of unknown type are present along the so boundary and the mounds are visible along the eastern boundary.					

Year	Details
Oct 2013 - Google Earth image (colour)	Earthworks or stockpiling of soils is visible in the southwest corner of the site. No other changes have occurred.
Jan 2014 – to present day - Google Earth images (colour)	Soil stockpiles and anthropogenic type materials are visibly present along the southern boundary. The soil mounds along the eastern and southern boundaries are overgrown with vegetation. No other changes have occurred.

3.2 Section 149 Certificate

Under item 19 Site Verification Certificates (p15) of the section 149 Certificate (presented in **Appendix F**), it is stated that the site is not affected by any of the matters as prescribed by Clause 59(2) of the Contaminated Land Management Act 1997.

3.3 Land Titles

The table below presents the details of the relevant land titles for the site. Land title documents are presented in **Appendix G**.

Title Ref.	Title ID	Year	Details	Contamination Issues
Lot 7 of Section E in DP6934	Vol. 2921 Fol. 250	1919-1919	Owner: Edward Fletcher (Fruit Grower)	Farming
		1919-1929	Charles Fredrick and Edith Margaret Reid (Freeholder)	Farming
		1929-1937	Edward Henry James Compton (Upholsterer)	Farming related (?)
		1937-1983	Anthony Gauchi (Carrier)	Farming related (?)
Lot 1 in DP 1175636	1/1175636	1983- present	Calabria Community Club Ltd	Sporting and community activities

Table 3-2 Summary of Land Title Information

3.4 WorkCover DG Search

A Dangerous Goods Licence search was requested to be conducted by WorkCover on their Stored Chemical Information Database (SCID) and microfiche records. The search found that there are no records pertaining to the licensing of dangerous goods at the site. The WorkCover search documents are presented in **Appendix H**.

3.5 Contaminated Land Register and Notifications

A review of the NSW EPA list of sites notified under section 58 of the CLM Act 1997 as well as the list of sites notified to the EPA under the duty to report requirements (section 60) showed that the site is not registered as a contaminated site or notified as a potentially contaminated site.

3.6 Contamination Issues

The following operations and activities have been identified as contamination issues from the historical appraisal:

- Farming operations.
- Infilling of creek areas and other earthworks.
- Stockpiling of soils of unknown origin.
- Storing/dumping of anthropogenic wastes.

The site areas where these activities have occurred where targeted for sampling to assess the potential contamination in soils. These works are presented in the following sections of this report.

Based on the historical issues, the following contaminants of concern were assessed in soils:

- Total Petroleum/Recoverable Hydrocarbons (TPH/TRH)
- Polycyclic Aromatic Hydrocarbons (PAH)
- BTEXN (benzene, toluene, ethylybenzene, xylenes, naphthalene)
- Metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn)
- Pesticides (organochlorine and organophosphate)
- Asbestos.

4.1 Soil Sampling

Details of the soil sampling program are presented below.

Table 4-1 Soil Sampling Works Summary

Activity/Item	Details				
Date of Field Activities	28 and 29 September 2015				
Service Location	Dial Before You Dig plans were reviewed before any sampling was conducted to locate underground services.				
	Ken Coles Excavations Pty Ltd was contracted to excavate 11 test pits within the soil mounds. A hand auger was used to auger 10 soil bore holes. The rationale behind the position of each sampling location was:				
Test pits and	• Test pits (TP1, TP2, TP3, TP4, TP5A, TP5B, TP6A, TP6B, TP7A, TP7B, TP8) were positioned evenly along the soil mound/stockpiles along the southern and eastern site boundaries to assess for potential dumping of wastes.				
boreholes	• Soil bores (SB4, SB5, SB6, SB7) were used to target the former creek that has been previously infilled.				
	• Soil bores (SB2, SB3, SB8, SB9) were used to target former farming structures and operational areas.				
	• The remaining soil bores were used to generally cover the site area and assess the soil quality of former crop growing land.				
Soil Logging	Soil type classifications and descriptions are based on Unified Soil Classification System (USCS) and on Australian Standard AS4482.1-1997 "Guide to sampling and investigation of potentially contaminated soil".				
	Soil descriptions for the lithology encountered during drilling are presented in the test pit and bore logs in Appendix C .				
	Soil samples were taken directly from the excavator bucket or from the hand auger using nitrile gloves that were changed between samples.				
Soil Sampling	All soil samples were placed in clean, laboratory-supplied acid washed solvent rinsed glass jars. Asbestos samples were placed inside laboratory supplied zip-lock bags.				
Soil Screening	Soil samples were screened for the potential presence of hydrocarbons/volatile organic carbons (VOCs) using a photo-ionisation detector (PID), which was calibrated to a known concentration (100 parts per million (ppm)) of iso-butylene calibration gas. PID readings are presented on the logs in Appendix C and the calibration records are presented in Appendix I .				

4

Activity/Item	Details
Decontamination Procedures	The hand auger was washed and decontaminated between sampling locations with potable water and a solution of Decon 90.
Sample Preservation	Samples were stored on ice in an insulated cool box whilst on-site and during transit to the laboratory. All samples analysed for the contaminants of concern were submitted and analysed within the required holding period.
Disposal of Soil Cuttings	Soil cuttings were used to backfill test pits and bore holes once samples had been collected.
Disposal of consumable materials	Single use materials used during sampling were placed into garbage bags and disposed off-site.

4.1.1 Soil Sample Analysis

A total of 20 soil samples were analysed by ALS Environmental from 11 test pits collected from within the soil mounds and from the 10 hand augered bores holes. Analysis of the soil samples included:

- 18 primary soil samples were analysed for TPH/TRH, BTEXN, PAH and 8 heavy metals.
- 12 soil samples were analysed for the presence of asbestos.
- 6 primary soil samples were analysed for Pesticides (OC/OP).
- 2 field quality control (QC) duplicate sample were analysed.

4.2 Soil Investigation Criteria

NEPM 2013 Health Based Investigation Levels

The National Environment Protection (Assessment of Site Contamination) Measure 2013 (ASC NEPM 2013) Health-based Investigation Levels (HILs) provide a framework that is applicable for assessing human health risk via all relevant pathways of exposure and covers a broad range of metals and organic substances. Different levels are provided for a variety of exposure settings based on the land use scenario at a particular site.

The proposed land use for the site will be multi-storey residential, as such the land use criteria adopted for HILs for this Limited Phase 2 was:

• **HIL B**: Residential with minimal opportunities for soil access including dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

NEPM 2013 Health Screening Levels

The ASC NEPM 2013 HILs do not provide criteria for petroleum hydrocarbon chemicals, therefore the Health Screening Levels (HSLs) were developed and form part of the ASC NEPM 2013. The HSLs are designed to be protective of human health and are applicable to assessing human health risk via the inhalation pathway. The HSLs used in this report have not been adjusted for site specific parameters such as moisture content for this phase of work. HSLs are available for various depth profiles and predominant lithology (sand, silt and clay).

The proposed land use for the site will be multi-storey residential, as such the land use criteria adopted for HILs for this Limited Phase 2 was:

• **HSL B**: Residential with minimal opportunities for soil access including dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

NEPM 2013 Ecological Investigation/Screening Levels

The ASC NEPM 2013 Ecological Investigation levels and Ecological Screening Levels (EILs and ESLs) have been developed for selected metals and organic substances and are applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties, whereas ESLs do not, and both are relevant to land use scenarios and apply to the top two (2) metres of soil. EILs take into account soil texture and age of the impacts, whereas ESLs account only for soil texture.

The ASC NEPM 2013 EIL Calculation Spreadsheet was used to calculate site specific EILs for copper, chromium, nickel and zinc. Nominal values were used to calculate ACLs and ABLs for each analyte.

NEPM 2013 Asbestos

The ASC NEPM 2013 asbestos guidelines have been developed for managing land use impacts associated with asbestos and are applicable for assessing risk to human health. The guideline has been derived from the Western Australian Department of Health (WA DoH 2009) guidance. The guidance covers bonded Asbestos Containing Material (bonded ACM), Fibrous Asbestos (FA) and Asbestos Fines (AF).

Note that these criteria were not used in this Limited Phase 2 given that the analysis was to assess for the presence of asbestos only and not to quantify asbestos materials in soils.

NEPM 2013 Aesthetic Considerations

In accordance with the ASC NEPM 2013, the aesthetic state of sites is required to be taken into account. Aesthetic issues generally relate to the presence of materials with a negligible risk or non-hazardous inert foreign material in soil or fill resulting from human activity. Sites that have been assessed as being acceptable from a human health and environmental perspective may still contain such foreign material. An assessment of the site aesthetics requires consideration of the natural state of soil on any given site, and a comparison between it and the soil encountered during investigation works.

In particular, soils on site should not exhibit discolouration (staining), a malodorous nature (odours) or abnormal consistency (rubble and trash).

NEPM 2013 Management Limits

The ASC NEPM 2013 Management Limits are relevant for TRH contaminants only. The Management Limits are specific for soil types (coarse and fine) and land uses. If adopted on a site, Management Limits are intended to avoid or minimise the potential effects of the following and require consideration of site-specific factors to determine the maximum depth to which the limits should apply:

- Formation of observable light non-aqueous phase liquids (LNAPL).
- Fire and explosive hazards.
- Effects on buried infrastructure e.g. penetration of, or damage to, in-ground services by hydrocarbons.

4.3 Quality Assurance and Quality Control

The Limited Phase 2 works were completed following standard operating procedures for conducting site contamination investigations. Standards followed included:

- General field documentation
- Health and safety
- Use of Personal Protective Equipment (PPE)
- Representative sample collection and labelling
- Equipment calibration
- Chain of Custody documentation for analytical samples
- Decontamination
- Collection of quality control samples (may include: intra laboratory, inter laboratory, rinsates, blanks, spikes).

The data validation guidelines adopted are based upon the following data validation guidance documents published by the United States Environmental Protection Agency (USEPA):

- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 540-R-10-011, dated January 2010)
- USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 540/R-99/008, dated June 2008)
- National Environment Protection (Assessment of Site Contamination) Measure (ASC NEPM 2013).

The process involves the checking of analytical procedure compliance and the assessment of the accuracy and precision of analytical data from a range of quality control measurements generated from both field sampling and analytical programs. Specific elements that have been checked and assessed for this project include:

- preservation and storage of samples upon collection and during transport to the laboratory
- holding times
- use of appropriate analytical procedures
- required LOR
- frequency of conducting quality control measurements
- laboratory blanks
- field duplicates
- laboratory duplicates
- matrix spike/matrix spike duplicates (MS/MSDs)
- surrogates (or System Monitoring Compounds)
- the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

Results and Discussion

Field observations made during the drilling of the soil bores indicated the following:

- No odours or discolouration was noted in soil samples.
- The PID readings showed no elevated volatiles in the samples collected.
- Anthropogenic wastes (human trash and junk) and extraneous materials (concrete rubble and building materials) were observed at all test pit locations.

5.2 Soil Analytical Results and Discussion

Soil analytical data results are presented in Table 1 of **Appendix B** and in the laboratory reports contained in **Appendix J**.

The QA/QC results reported in Table 1 along with the data validation process summarised in section 5.3 show that the results represent the conditions at the site and are considered acceptable for interpretive use.

The results presented in Table 1 show that all sample results meet the adopted soil investigation criteria and the soils across the site are of generally good quality. Indications of contamination impacts were reported as follows:

Asbestos

5.1

Chrysotile asbestos was detected in the soil mound at location TP6B_0.4m as one friable asbestos fibre bundle approximately 2mm x 1mm x 0.5mm.

Asbestos material was not observed within the test pit during sampling nor were any fibro type materials, and therefore the source of the detectable asbestos is not known, however it is likely to be related to the dumping of anthropogenic wastes and extraneous materials. At TP6B (refer to log), pieces of timber, plastic scraps and mesh fencing were observed buried in the mound. Asbestos was not detected at any other sample location and asbestos containing materials (e.g. fibro cement sheeting, fibrous lagging or fibro tiles) were not observed at any location. We considered that the presence of asbestos may only be a localised occurrence and the extent of asbestos impact is potentially limited.

Aesthetic Impacts

Anthropogenic waste and extraneous materials are present within the stockpiled soil mounds along the eastern and southern boundaries. The extent of the waste in the mounds is not known and may be present in the soils that encroach the southern boundary and go down the embankment to the riparian zone. Based on visual assessment of this material, it would not be suitable to be used at the site.

5.3 Quality of Analytical Data

Analytical data validation is the process of assessing whether the data is in compliance with method requirements and project specifications. The primary objective of this process is to ensure that data of known quality are reported, and to identify if data can be used to fulfil the overall project objectives.

On the basis of the analytical data validation procedure employed, the overall quality of the soil analytical data produced is considered to be of an acceptable standard for interpretive use. The table below provides a summary of the data validation.

5 Results and Discussion

Table 5-1 Validation of Data Quality

Requirement	Compliance	Comments		
Field Duplicates	Yes	Intra-laboratory duplicate samples were collected by splitting each sample into the primary and duplicate sample containers.		
		1 duplicate per 10 primary samples was analysed.		
		All calculated RPDs fall within the acceptable range of <50%, the exception being samples with concentrations of <10 times the LOR which can show a higher RPD.		
RPDs	Yes	A minor noncompliance was reported for Ni (SB3_0.2/QC2). The RPD was marginally over the 50% threshold and can be attributed to the heterogeneous nature of soils.		
		Where concentrations of either sample is <lor <10="" calculated.<="" is="" lor,="" no="" or="" rpd="" td="" the="" then="" times=""></lor>		
Sampling equipment properly decontaminated	Yes	Disposable equipment used. Hand auger decontaminated between sampling locations.		
Sample Preservation	Yes	Samples were properly preserved. Samples were compliant with required storage temperature.		
Samples delivered to laboratory within sample holding times.	Yes	Confirmed from COCs and laboratory reports.		
Equipment Calibration	Yes	Refer to Appendix I.		
Blanks Partial		Trip blank samples were not analysed for soils. No volatile chemicals were expected or were present within the soil materials, therefore the potential for cross contamination during sample transport was considered negligible.		
Analytical procedures	Yes	All NATA accredited		
field personnel Yes staff (Adam Sullivan – 18 years experience) at		Sampling procedures follow industry standards, and field staff (Adam Sullivan – 18 years experience) are competent in sampling methods and QA/QC protocols.		

Conclusions and Recommendations

Conclusions

Based on the findings of this Limited Phase 2, Sullivan-ES make the following conclusions:

- The site has had limited exposure to historical activities that may have caused contamination, which correlates well with soil analytical results showing that the site soils are of relatively good quality and meet the land use criteria for the proposed development. As such, the site soils are suitable for the proposed land use as a multi-storey residential apartment.
- Asbestos was detected at one location (TP6B_0.4m) in the stockpiled soil mounds. This impact is considered a localised impact given that asbestos was not detected anywhere else nor was asbestos containing materials visually observed anywhere.
- Apart from the localised detection of asbestos, the quality of soil within the mounds meets the land use criteria and would be suitable for use onsite, however, the soil is mixed with anthropogenic wastes and extraneous materials which are unsuitable to remain onsite. These waste materials should be screened and segregated from the soil mounds for offsite recycling or disposal.

Recommendations

Works required to characterise or ameliorate the soil mounds, such as segregating anthropogenic waste or removing asbestos, should be the subject of a waste management plan (WMP) to be incorporated within construction management plans for the new development. The WMP should include details of sampling for waste classification purposes and management options to reuse, reduce or dispose of the waste materials including asbestos wastes. Sampling for waste classification purposes should considered the presence of waste materials existing beyond the southern site boundary and be undertaken following the NSW DECCW Waste Guidelines 2009 and the ASC NEPM 2013 guidelines.

References

Australian Standard 4482.1 Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds, 2005.

Contaminated Land Management Act 1997 (CLM Act).

Fairfield Local Environmental Plan 2013.

National Environment Protection (Assessment of Site Contamination) Measure (ASC NEPM 2013).

NSW EPA, Sampling Design Guidelines, 1995.

NSW OEH, Guidelines for Consultants Reporting on Contaminated Sites, 2011.

NSW OEH Nature Conservation - Soils data online (http://www.environment.nsw.gov.au/soils/data.htm)

NSW DPI Office of Water – Continuous water monitoring network database (www.allwaterdata.water.nsw.gov.au).

NSW EPA, 2006, Guidelines for the NSW Site Auditor Scheme (2nd Edition).

Protection of the Environment Operations (Waste) Regulations 2005 (POEO - Waste Regulations).

State Environmental Planning Policy No.55 – Remediation of Land 1998 (SEPP55).

US EPA, 2000, Guidance for the Data Quality Objective Process, EPAC QA/G-4 DEC/600R-96/055, United States Environmental Protection Agency Office of Environmental Information, Washington DC.

US EPA, 2000, Data Quality Objectives for Hazardous Waste Site Investigations, EPA QA/G-4HW Final, Washington DC.

USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 540-R-10-011, dated January 2010)

USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 540/R-99/008, dated June 2008)

Sullivan Environmental Sciences Pty Ltd (Sullivan-ES) has prepared this report in accordance with the usual care and thoroughness of the consulting profession for the use of GJW Consultancy Pty Ltd and only those third parties who have been authorised in writing by Sullivan-ES to rely on this Report.

It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this Report.

It is prepared in accordance with the Sullivan-ES fee proposal (7 September 2015) and email acceptance by GJW Consultancy Pty Ltd (14 September 2015).

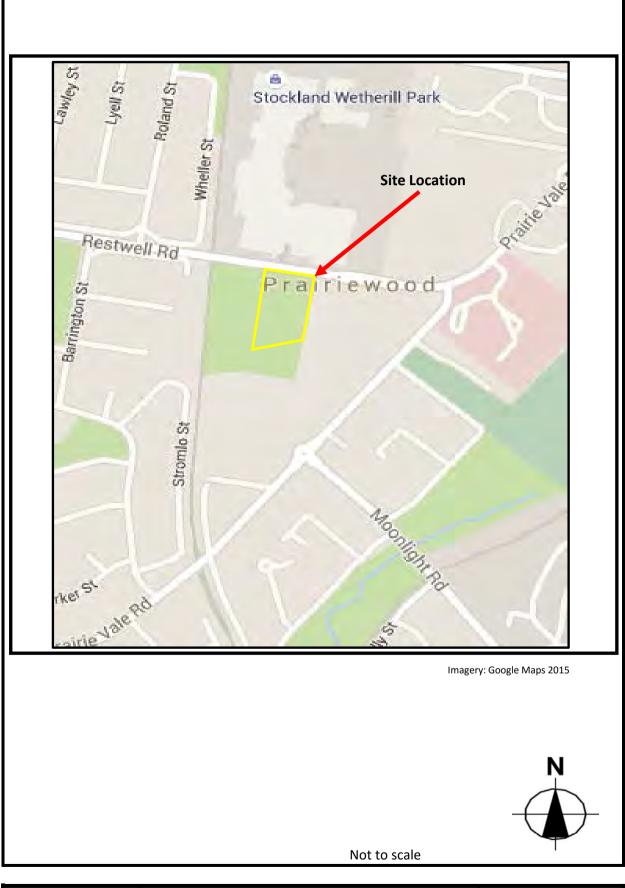
Where this Report indicates that information has been provided to Sullivan-ES by third parties, Sullivan-ES has made no independent verification of this information except as expressly stated in the Report. Sullivan-ES assumes no liability for any inaccuracies in or omissions to that information.

This Report was prepared between 14 September 2015 and 9 October 2015 and is based on the conditions encountered and information reviewed at the time of preparation. Sullivan-ES disclaims responsibility for any changes that may have occurred after this time.

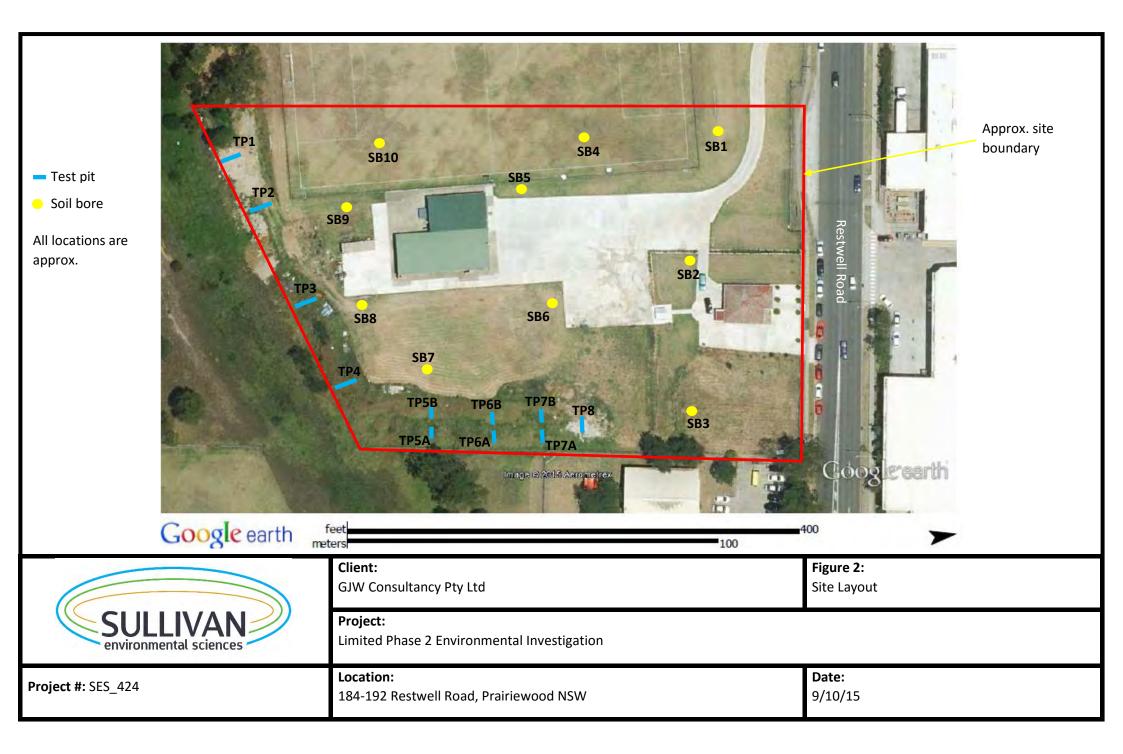
Investigations undertaken in respect of this Report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and contamination may have been identified in this Report.

Subsurface conditions can vary across a particular site and cannot be exhaustively defined by the investigations described in this Report.

This Report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties. This Report does not purport to give legal advice.


Except as required by law, no third party may use or rely on this Report unless otherwise agreed by Sullivan-ES.

To the extent permitted by law, Sullivan-ES expressly disclaims and excludes liability for any loss, damage, cost or expenses suffered by any third party relating to or resulting from the use of, or reliance on, any information contained in this Report. Sullivan-ES does not admit that any action, liability or claim may exist or be available to any third party.


It is the responsibility of third parties to independently make inquiries or seek advice in relation to their particular requirements and proposed use of the site.

Appendix A Figures

SULLIVAN environmental sciences	Client: GJW Consultancy Pty Ltd	Figure 1: Site Location
	Project: Limited Phase 2 Environmental Investigation	
Project # SES_424	Location: 184-192 Restwell Road, Prairiewood NSW	Date: 9/10/2015

B

Appendix B Results Tables

Table 1: Soil Analytical Results 184-192 Restwell Road, Prairiewood NSW GJW Consultancy Pty Ltd Proj # SES_424

			Proj # SES	6_424																														
					Metals							Asbestos					ТРН			TRH							BTEXN							
		Analyte	Moisture	Arsenic	Cadmium	Chromium	Copper	Lead	Nickel	Zinc	Mercury	Sample Weight	Asbestos Detected	Asbestos Type	C6 - C9 Fraction	C10 - C14 Fraction	C15 - C28 Fraction	C29 - C36 Fraction	C10 - C36 Fraction (sum)	C6 - C10 Fraction	C6 - C10 Fraction minus BTEX (F1)	>C10 - C16 Fraction	>C16 - C34 Fraction	>C34 - C40 Fraction	>C10 - C40 Fraction (sum)	>C10 - C16 Fraction minus Naphthalene (F2)	Benzene	Toluene	Ethylbenzene	meta- & para-Xylene	ortho-Xylene	Sum of BTEX	Total Xylenes	Naphthalene
		Units	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg n	ng/kg	mg/kg	g	g/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg n	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/
		LOR	1	5	1	2	5	5	2	5	0.1	0.01	0.1		10	50	100	100	50	10	10	50	100	100	50	50	0.2	0.5	0.5	0.5	0.5	0.2	0.5	
		HIL Criteria		500	150	500	30,000	1,200	1,200 60	0,000	120																							
		HSL Criteria																			45					110	0.5	160	55				40	
		EIL Criteria		100		410	230	1,100	270	770																								1
		ESL Criteria																			180		300	2,800		120	50	85	70				105	
		Mgmt Limits																			700		2,500	10,000		1,000								
ample ID	Depth (m)	Date																																
P1 0.5	0.5	28/09/2015	10.8	9	<1	17	49	69	13	110	<0.1	57.7	No		<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	
C1		28/09/2015	12.3	8	<1	14	46	82	13	124	<0.1				<10	<50		<100		<10	-	<50	<100	<100	<50	<50	<0.2	<0.5	< 0.5	< 0.5	<0.5	< 0.5		
PD			13.0	11.8		19.4	6.3			12.0																								
P2 1.4	1.4	28/09/2015	16.8	9	<1	24	23	25	10	48	<0.1	27.4	No		<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.2	
P3 0.4	0.4	28/09/2015	11.0	11		20	19	19	8	43		20.3	No		<10	<50		<100	<50	<10		<50	<100	<100	<50	<50	<0.2	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.2	
- P4 1.0	1.0	28/09/2015	13.0	22	<1	22	30	44	13	86	<0.1				<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	
- 95B 1.5	1.5	28/09/2015	24.5	12		17	19		6	106	<0.1	50	No		<10	<50	<100	<100	<50	<10		<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.2	
P6B 0.4	0.4	28/09/2015	16	19	<1	27	33	32	18	76	<0.1	57.4	Yes	Ch	<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.2	
P7A_0.3	0.3	28/09/2015	15.1	10	<1	19	24	37	13	105	<0.1				<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.2	
98_0.4	0.4	28/09/2015	16.4	10	<1	26	22	36	14	62	<0.1	40.9	No		<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.2	
	0.4	28/09/2015	14.0	17	<1	36	43	35	14	94	<0.1	42.9	No		<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	
32_0.8	0.8	28/09/2015	21.1	9	<1	24	12	16	6	18	<0.1				<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	
33_0.2	0.2	28/09/2015	10.6	13	<1	38	26	36	20	56	<0.1				<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	
C2		28/09/2015	9.9	9	<1	47	31	29	40	63	<0.1				<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	
PD			6.8			21.2	17.5	21.5	66.7	11.8							·																	
34_0.3	0.3	29/09/2015	14.3	12	<1	29	32	39	16	86	<0.1				<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.2	
		29/09/2015	15.1	11		18	34	24	14	67	<0.1	50	No		<10	<50		<100		<10	-	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	
	0.5					18	25	12	11	43		28.1	No		<10	<50		<100		<10	-	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5		< 0.5	-	
	1.2	29/09/2015	18.7	9		-									10		100	.400	<50	<10	<10	<50	<100	<100	<50	<50	< 0.2	< 0.5	< 0.5	0.5				
86_1.2 87_1.0	1.2 1.0	29/09/2015	17.5	7	<1	20	26		12	42		54.4	No		<10	<50		<100												< 0.5	<0.5	< 0.5	-	
B6_1.2 B7_1.0 B8_0.8	1.2 1.0 0.8	29/09/2015 29/09/2015	17.5 12.8	7 11	<1 <1	20 24	30	106	23	304	<0.1	54.4 57.3	No No		<10	<50	<100	<100	<50	<10	<10	<50	<100	<100	<50	<50	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	
B5_0.5 B6_1.2 B7_1.0 B8_0.8 B9_0.3 B10_0.9	1.2 1.0	29/09/2015	17.5	7	<1 <1 <1	20		106 26			<0.1 <0.1						<100 <100		<50 <50		<10 <10												<0.2 <0.2	

Legend LOR - Limit of Reporting mg/kg - milligrams per kilogram Chromium - HIL criterion for Cr(VI) used

All ElLs calculated for aged sources using NEPC ElL calculation spreadsheet with analytical data and assummed value of %clay at 30%, CEC at 20meq/100g, and pH at 7. Where Non Limiting values occur for HSLs, then Csat value adopted. HSL, ESL & Mgmt Limits use coarse materials

1

Table 1: Soil Analytical Results 184-192 Restwell Road, Prairiewood NSW GJW Consultancy Pty Ltd

		Analyte	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a) anthracene	Chrysene	Benzo(b+j)fluoranthene	Benzo(k)fluoranthene	Benzo(a) pyrene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h) anthracene	Benzo(g.h.i)perylene	Sum of polycyclic aromatic hydrocarbons	Benzo(a)pyrene TEQ (zero)	Benzo(a)pyrene TEQ (half LOR)	Benzo(a)pyrene TEQ (LOR)
		Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k
		LOR	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.
		HIL Criteria																	400	4		
		HSL Criteria	3																			<u> </u>
		EIL Criteria	170																			
		ESL Criteria													0.7							
		Mgmt Limits																				
Sample ID	Depth (m)	Date																				
TP1_0.5	0.5	28/09/2015	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	
QC1		28/09/2015	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1
RPD																						
TP2_1.4	1.4	28/09/2015	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	
TP3_0.4	0.4	28/09/2015	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	
TP4_1.0	1.0	28/09/2015	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	
TP5B_1.5	1.5	28/09/2015	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.
TP6B_0.4	0.4	28/09/2015	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	0.6	
TP7A_0.3	0.3	28/09/2015	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	0.6	
TP8_0.4	0.4	28/09/2015	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5 <0.5	<0.5 <0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	0.6	1.
SB1_0.4 SB2 0.8	0.4	28/09/2015 28/09/2015	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	< 0.5	< 0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	0.6	1.
SB2_0.8 SB3 0.2	0.8	28/09/2015	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	0.6	1.
QC2		28/09/2015	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	0.6	
RPD																					0.0	1.
SB4 0.3	0.3	29/09/2015	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.
SB5 0.5	0.5	29/09/2015	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	0.6	1.
SB6 1.2	1.2	29/09/2015	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	0.6	
SB7 1.0	1.0	29/09/2015	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	0.6	1
SB8_0.8	0.8	29/09/2015	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	
SB9_0.3	0.3	29/09/2015	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1
SB10 0.9	0.9	29/09/2015	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	0.6	

Legend LOR - Limit of Reporting mg/kg - milligrams per kilogram Chromium - HIL criterion for Cr(VI) used

All ElLs calculated for aged sources using NEPC ElL calculation spreadsheet with analytical data and assummed value of %clay at 30%, CEC at 20meq/100g, and pH a Where Non Limiting values occur for HSLs, then Csat value adopted. HSL, ESL & Mgmt Limits use coarse materials

2

Table 1: Soil Analytical Results 184-192 Restwell Road, Prairiewood NSW GJW Consultancy Pty Ltd Proj # SES_424

			Proj # SE	:5_424																					r																
													Pestic	cides -	ос																		Pesti	cides -	OP						
		Analyte	al pha-BHC	Hexachlorobenzene (HCB)	beta-BHC	delta-BHC	Heptachlor	Aldrin	Heptachlor epoxide	Total Chlordane (sum)	trans-Chlordane	al pha-Endosulfan	cis-Chlordane	Dieldrin	4.4`-DDE	Endrin beta-Endosulfan	Endosulfan (sum)	4.4DDD	Endrin aldehyde	Endosulfan sulfate	4.4`-DDT	Endrin ketone	Methoxychlor	Sum of Aldrin + Dieldrin	Sum of DDD + DDE + DDT	Dichlorvos	Demeton-S-methyl Monocrotonhos	Monocrotopinos	Dimethoate Diazinon	Chlorpyrifos-methyl	Parathion-methyl	Malathion	Fenthion	Chlorpyrifos	Parathion	Pririmpnos-etnyi Chlorfenvinohos	Bromophos-ethvl	Bromopnos-etnyi	Fenamiphos Prothiofos	Ethion	Carbophenothion Azinphos Methyl
		Units			mg/kg mg																						g/kg mg														g mg/kg mg/kg
		LOR	0.05	0.05	0.05 0	.05 0.	0.0	0.05	0.05		0.05	0.05	0.05	0.05	0.05	0.05 0.			0.05	5 0.05	0.2	0.05	0.2			0.05	0.05	0.2	0.05 0.0	5 0.05	0.2	0.05	0.05	0.05	0.2	0.05 0	05 0	0.05	0.05 0.0	0.05	0.05 0.05
		HIL Criteria		15			1	LO		90						20	40	00					500	10	600									340							
		HSL Criteria																																							
		EIL Criteria																			180																				
		ESL Criteria																																							
		Mgmt Limits																																							
Sample ID	Donth (m)	Data	I																																						
TP1 0.5	0.5	28/09/2015						1	1 1									1	1	1	1				r r					1	r r						-			—	
QC1		28/09/2015																																							
RPD		28/09/2013																																							
TP2 1.4	1.4	28/09/2015																																							
TP2_1.4 TP3 0.4	0.4	28/09/2015																																							
TP3_0.4 TP4 1.0	1.0	28/09/2015	<0.0E	<0.0E		.05 <0.0		05 < 0.05	< 0.05	<0.0E	< 0.05	<0.05	<0.05	< 0.05	<0.05	:0.05 <0.		0.0		5 < 0.05	<0.2	< 0.05	<0.2	<0.05	< 0.05	<0.05 <	0.05 <	<0.2 <	:0.05 <0.0	5 < 0.05	<0.2	< 0.05	< 0.05	< 0.05	< 0.2 <	0.05 <0	05 <0	0.05 <	<0.05 <0.0	05 <0.05	6 <0.05 <0.05
TP5B 1.5	1.5	28/09/2015		<0.05	<0.05 <0	.05 <0.	15 <0.0	15 <0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 ·	.0.05 <0.	05 <0.0	JS <0.0	15 <0.05	\$ <0.05	<0.2	<0.05	<0.2	<0.05	<0.05	<0.05 <	0.05 <	.U.Z <	.0.05 <0.0	5 <0.03	<0.2	<0.05	<0.05	<0.05	<0.2 <	0.05	05 <0.	0.05	.0.03 .0.0	5 (0.05	\$ <0.05 <0.05
TP6B 0.4	0.4	28/09/2015																																							
TP7A 0.3	0.4	28/09/2015		<0.05	<0.05 <0	05 <0		05 <0.05	<0.05	<0.05	<0.05	<0.05			<0.05	:0.05 <0.				< _0.05	<0.2	< 0.05	<0.2	<0.05	< 0.05	<0.05	0.05 <	<0.2 <	0.05 <0.0	5 <0.05	<0.2	<0.05	<0.05	<0.05	<0.2		05 <0	1.05			6 <0.05 <0.05
TP8 0.4	0.3	28/09/2015		<0.05	<0.05 <0	.05 <0.	15 \0.0	0.05	<0.0J	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05 ·	.0.05 \0.	0.0	55 \0.0	15 \0.0.	5 <0.05	<0.2	<0.0J	<0.2	<0.05	<0.05	<0.03	0.05 <	V.2 \	.0.03 <0.0	5 \0.03	NU.2	<0.05	<0.05	<0.05	NU.2 N	5.05 <0	03 \0	5.05	0.03 \0.0	5 \0.03	0.03 (0.03
SB1 0.4	0.4	28/09/2015																																							
SB1_0.4	0.4	28/09/2015		<0.05	<0.05 <0	05 <0	05 <00	05 < 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	:0.05 <0.	05 <00	0.5 <0.0	5 <0.05	< 0.05	<0.2	< 0.05	<0.2	<0.05	< 0.05	<0.05	0.05 <	< 0.2 <	0.05 <0.0	5 <0.05	<0.2	<0.05	<0.05	<0.05	<0.2 <	0.05 <0	05 <0	0.05	0.05 <0.0	15 <0.01	6 <0.05 <0.05
SB3 0.2	0.2	28/09/2015														0.05 <0.						< 0.05			< 0.05					5 < 0.05			<0.05								6 <0.05 <0.05
QC2		28/09/2015																0.0																							
RPD																																									
SB4 0.3	0.3	29/09/2015	<0.05	< 0.05	<0.05 <0	.05 <0.	0.5 < 0.0	05 < 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	:0.05 <0.	05 <0.0	0.0	5 < 0.05	5 < 0.05	< 0.2	< 0.05	<0.2	<0.05	< 0.05	<0.05 <	0.05 <	<0.2 <	0.05 <0.0	5 < 0.05	<0.2	< 0.05	< 0.05	< 0.05	<0.2 <	0.05 <0	05 <0	0.05 <	<0.05 <0.0)5 <0.0!	6 <0.05 <0.05
SB5 0.5	0.5	29/09/2015																																							
SB6 1.2	1.2	29/09/2015																																							
SB7 1.0	1.0	29/09/2015																																							
SB8 0.8	0.8	29/09/2015																																							
SB9 0.3	0.3	29/09/2015		< 0.05	< 0.05 <	0.05 <0	.05 <0.	.05 <0.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05 <0	.05 <0	.05 <0.	0.0> 0.0	0.0> 0.0	< 0.2	< 0.05	<0.2	< 0.05	< 0.05	< 0.05	< 20.05 <	<0.2	<0.05 <0.	0.0> 20.0	< 0.2	< 0.05	< 0.05	< 0.05	<0.2	< 0.05).05 <0	< 0.05	<0.05 <0.	.05 <0.0	9.05 20.05
SB10 0.9	0.9	29/09/2015																																							
		-,,	I.							· · · · · · · · · · · · · · · · · · ·	i I						1	- 1				· · · · · ·			. I	t					. I										

Legend LOR - Limit of Reporting mg/kg - milligrams per kilogram Chromium - HIL criterion for Cr(VI) used

All ELLs calculated for aged sources using NEPC ELL calculation spreadsheet with analytical data and assummed value of %clay at 30%, CEC at 20meq/100g, and pH at 7. Where Non Limiting values occur for HSLs, then Csat value adopted. HSL, ESL & Mgmt Limits use coarse materials

Appendix C Logs

С

CLIE PRO LOC DRII	JEC ATIO LL CO Mode	GJ T: DN: DN: DNT	IW C Limi 184- RAC N/A	onsulting Pty Ltd ted Phase 2 Environmental Investigation 192 Restwell Road, Prairiewood CTOR: N/A Hole Angle:	DA DA	B NU TE C TE C	MBER: OMMEI OMPLE D BY: Bore Si	NCE	Sheet 1 of 1 SES_424 D: 28/09/2015
Drilli	ng Fl	uid:	N/A	Orientation:			Co-ords	s:	
Method/ Casing	Depth (m)	Graphic Log	USCS Classification	Material Description type, colour/mottling, plasticity/particle size,secondary/minor components, soil origin	Moisture	Consistency	DIG	Sampling	Field Records insitu testing, groundwater observations/regime, well construction details, additional information
Hand Auger	-			Turf and topsoil Fill: Clayey Silt, low plast, dark brown, soft, friable, minor shale rock fragments				-	
Han	0.50			Becoming Silty Clay	м	s	0.3	*	SB1_0.4
	1			Glass pieces and sand			-	-	
	1.50			Natural (?): Clay, med plast, yellow/red-brown mottles, moist, firm, with ironstone gravels (<1cm diam)	м	F	0.1		SB1_1.5
	2								
Produc	5	A.S						-	ocument No:

PROJECT: Limited Phase 2 Environmental Investigation DATE COMMENCED: 28/09/ LOCATION: 184-192 Restwell Road, Prairiewood DATE COMPLETED: 28/09/ DRILL CONTRACTOR: N/A LOGGED BY: A Drill Model: N/A Hole Angle: Bore Size: RL: Drilling Fluid: N/A Orientation: Co-ords: Field Records insitu testing observation on soil origin Image: Provide and pr	Borehole No: SB2 Sheet 1 of 1	SI	ciences	ntal so	JLLI	enviro			ORE	
Drill Model: N/A Hole Angle: Co-ords: Co-ords: Image Fluid: N/A Orientation: Co-ords: Co-ords: Image Fluid: N/A Orientation: Sol origin Image Fluid: Image Fluid: N/A Orientation: Sol origin Image Fluid: Image Fluid: N/A Orientation: Sol origin Image Fluid: Image Fluid: N/A Co-ords: Image Fluid: Image Fluid: Image Fluid: N/A Sol origin Image Fluid: Image Fluid: Image Fluid: Turf and topsoil Image Fluid: Image Fluid: Image Fluid: Image Fluid: Fill: Silly Clay, low plast, brown, moist, soft Image Fluid: Image Fluid: Image Fluid: Fill: Silly Clay, low plast, vellow/brown mottled, moist, stiff Image Fluid: Image Fluid: Image Fluid: Image Fluid: Fill: Silly Clay, high plast, vellow/brown mottled, moist, stiff, Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Image Fluid: Im	ES_424 18/09/2015 18/09/2015 A.S.	D: 28/0	NCEI	MEN PLE	OMM	TE C TE C	DA1 DA1		ROJE OCA	P
Material Description Bit Material Description Materia		R	ze:						rill Mo	D
Image: State of the state	ords	Field Record		ords	Co-or		_		rilling	D
Big Image: Second	testing, groundwater rvations/regime, well iction details, additional information	insitu tes observat constructio		2	CIId	Consistency	Moisture	components,	Casing	Mathod/
0.50 Clay, med/nign plast, yellow/prown mottled, moist, stiff										
0.50 Clay, med/nign plast, yellow/green/red mottles, moist, stiff W St 0.1 St 582_0.8 1 Natural: Clay, high plast, yellow/green/red mottles, moist, stiff, with ironstone gravels (<2cm diam)	.3	SB2_0.3	*	- .0 -	0.0	s	м)	Auger
1 Natural: Clay, high plast, yellow/green/red mottles, moist, stiff, with ironstone gravels (<2cm diam)				-					0.5	Har
1 Natural: Clay, high plast, yellow/green/red mottles, moist, stiff, with ironstone gravels (<2cm diam)				-						
End of hole	.8	SB2_0.8	*).1 -	0.1	St	W			
				-						
				-						
				-					1.	
				-						
				-						
			-	-						
			-	-					2.	
				-						
				-						
			-	-						
			-	-					2	
				-					5.	
				-						
				-						I
				-						I
4.50				-					4.	ĺ
				-						
				-						L

Produced By: A.S. Checked By: A.S.

PRO LOC DRII Drill	ENT: JEC ATIC L CO	GJ T: DN: DN: DN1	IW C Limi 184- RAC N/A	onsulting Pty Ltd ted Phase 2 Environmental Investigation 192 Restwell Road, Prairiewood CTOR: N/A Hole Angle:	DA DA	B NU TE C TE C GGE	MBER OMME OMPLE D BY: Bore S	ize:	Sheet 1 of 1 SES_424 D: 28/09/2015
Drilli	ng Fl	uid:	N/A	Orientation: Material Description	1		Co-ord		Field Records
Method/ Casing	Depth (m)	Graphic Log	USCS Classification	type, colour/mottling, plasticity/particle size,secondary/minor components, soil origin	Moisture	Consistency	DID	Sampling	insitu testing, groundwater observations/regime, well construction details, additional information
				Turf and topsoil				-	
Hand Auger	-			Fill: Clay, med plast, brown/red/yellow mottles, dry, hard, with gravels (<2cm diam)	D	н	0.1	- X	SB3_0.2 (QC2)
На	0.50			Silty Clay, low plast, dark brown, moist, soft, high silt content Green tinges, organic odour, becoming wet			-	-	
	1			End of hole				•	
	1.50						- -	-	
	2							-	
	-						-	-	
	2.50						-	-	
	3_						-	-	
	-							-	
	3.50						-	-	
	4_						-		
	4.50						-	-	
Produc	5 ed By:	AS		1				- -	ocument No:

Borehole No: SB4

BOR	REHC	DLE	LOG	ì	~	envin	onmental sc	ience		SB4
									Sheet 1	of 1
				onsulting Pty Ltd	JO	B NU	JMBER:		SES_424	
				ted Phase 2 Environmental Investigation	DA	TE C	OMMEN	NCE	D: 29/09/201	5
				192 Restwell Road, Prairiewood	DA	TE C	OMPLE	TEC): 29/09/2015	5
				CTOR: N/A	LO	GGE	D BY:		A.S.	
Drill				Hole Angle:			Bore Si		RL:	
Drilli	ng Fl	uid:	N/A	Orientation:			Co-ords	5:		
		_	Ę	Material Description					Field Records	
	Ê	Ľő	atic			nc)		5	insitu testing, gr	
/poc	ц Р	hic	S Sific	type, colour/mottling, plasticity/particle size,secondary/minor components,	iure	iste		olinç	observations/re	
Method/ Casing	Depth (m)	Graphic Log	USCS Classification	soil origin	Moisture	Consistency	DIA	Sampling	construction detai informat	
20		Ċ	50	Turf, topsoil and sand	Σ	с С		S		
				· · · · · · · · · · · · · · · · · · ·						
Jer				Fill: Silty sand with clay lumps			_			
Aug				Fill: Clay with sand inclusions, med plast, red/grey mottled,	м	St	0.1	×	SB4_0.3	
Hand Auger				moist, stiff/hard (compacted), minor cobble size gravels				•	001_010	
Ξ	0.50						-			
	0.50						_			
	-			Gravelly shale rocks			-			
	-						-			
	-			White clay, high plast, moist, stiff, organic layer, paper or plastic bag			-			
	1									
		1		Natural: Silt, low plast, brown/green, wet, soft (old topsoil layer?)						
	'	1		End of hole			•	1		
	-			End of hole			-			
							-			
	-						-			
	1.50						_			
							-			
							_			
							-			
	2						-			
	² -						-			
	-						-			
							-			
							-			
							_			
	2.50									
	-									
	-						-			
							-			
							-			
	-						-			
	3						_			
		1								
	'	1					-	1		
	.	1					l -	1		
1	. •	1								
1	3.50	ł					-	1		
	.	1					-			
	.	1					-			
	Ι.	1					Ι.			
		1								
	4	1					i -			
	-	1					l –	1		
1	•	1								
1	•	ł						1		
	.	1					-	1		
	.	1					-			
	4.50	1					_			
		1								
1	'	1					-	1		
1	•	1					-	1		
1	•	1					- 1			
	•	ł					-			
L	5	1								
1										

Produced By: A.S. Checked By: A.S.

Document No:

BOR	EHC	DLE	LOG	ì	C	SL		AN	SB5
									Sheet 1 of 1
				onsulting Pty Ltd ted Phase 2 Environmental Investigation			IMBER:		SES_424 D: 29/09/2015
				192 Restwell Road, Prairiewood			OMPLE		
DRIL	LC	ONT	FRAC	CTOR: N/A	LO	GGE	D BY:		A.S.
Drill Drilli				Hole Angle: Orientation:			Bore Si Co-ords		RL:
Dimin	ig i i						00-010		Field Records
Method/ Casing	Depth (m)	Graphic Log	USCS Classification	type, colour/mottling, plasticity/particle size,secondary/minor components, soil origin	Moisture	Consistency	OId	Sampling	insitu testing, groundwater observations/regime, well construction details, additional information
				Turf, topsoil and sand					
Jer				Fill: Silty sand, uniform, brown, loose, dry					
Hand Auger				Clay and sand mixture				-	
Т	0.50			Higher clay content, includes gravels, minor cobbles (>2cm diam)	м	F	0.0 _	*	SB5_0.5
	1			Clay, med plast, red/grey mottled, moist, stiff, minor cobble size gravels			······		
	-			End of hole					
	1.50								
	-						- - -		
	2								
							-	-	
	2.50	-					-	-	
	3						-	-	
	3.50 <u> </u>						· · -	-	
	4							-	
	4.50						- - - -	-	
	5	-					·		

CLIE PRO	NT: JEC ATIC	GJ T: DN:	Limit 184-	onsulting Pty Ltd ted Phase 2 Environmental Investigation 192 Restwell Road, Prairiewood TOR: N/A	DA DA	B NU TE C TE C	JLLIV onmental so JMBER: COMMEI COMPLE D BY:	NCE	Sheet 1 of 1 SES_424 D: 28/09/2015
Drill I	Mode	el:	N/A	Hole Angle:			Bore Si	ze:	RL:
Drillir	ng Fl	uid:	N/A	Orientation: Material Description		1	Co-ords	3:	Field Records
Method/ Casing	Depth (m)	Graphic Log	USCS Classification	type, colour/mottling, plasticity/particle size,secondary/minor components, soil origin	Moisture	Consistency	DIA	Sampling	insitu testing, groundwater observations/regime, well construction details, additiona information
Hand Auger	-			_ Jurf and topsoil Fill: Gravel and clay mixture, brown/red colouring, dry, hard/compacted, large gravels >2cm diam				-	
Ца	0.50			Refusal on gravel - move hole 1m south Silty Clay, low plast, yellow, gravelly with shale rocks	D	н	0.0	*	SB6_0.5
	1			Clay, stiff, brown/grey/red mottles				-	
	-			Clay, med plast, red/grey mottles, includes sands and gravels,	м	St	0.1	*	SB6_1.2
	1.50			End of hole			- - -	-	
	2						- - -	-	
	2.50						- - -	-	
	3_ -						-	-	
	3.50						-		
	4_						- - -	-	
	4.50						- - -		
	5						-		
oduce	ed By: d By:	A.S A.S						D	ocument No:

BOR	EHC	DLE	LOG		C	SL		AN	Borehole No: SB7
					-	envin	onmental s	cience	Sheet 1 of 1
PRO LOC	JEC ATIC	T: DN:	Limit 184-	onsulting Pty Ltd ted Phase 2 Environmental Investigation 192 Restwell Road, Prairiewood t TOR: N/A	DA DA	TE C	JMBER: COMME COMPLE D BY:	NCE	
Drill				Hole Angle:			Bore S		RL:
Drilli	ng Fl		N/A	Orientation: Material Description	1		Co-ord	s:	Field Records
Method/ Casing	Depth (m)	Graphic Log	USCS Classification	type, colour/mottling, plasticity/particle size,secondary/minor components, soil origin	Moisture	Consistency	PID	Sampling	insitu testing, groundwater observations/regime, well construction details, additional information
Auger	-	 		_Jurf and topsoil					
Hand Auger	0.50			Clay, med plast, dark brown with red flecks, minor gravels,					
				Clay, med/high plast, yellow/grey mottled, red flecks, moist,					
	1_	-		Clay mixture, brown, includes sands and gravels	м	F	0.1 -	*	SB7_1.0
	1.50			End of hole				-	
							-	-	
	2_	-					_	-	
								-	
	2.50 <u></u>						-		
	3						_	-	
								-	
	3.50 <u></u>	-					-	-	
	4_	-					-	-	
								-	
	4.50						-	-	
	5							-	

Produced By: A.S. Checked By: A.S. Document No:

Borehole No: SB8

BOR	EHC	DLE	LOG	i	C	SL	JLLIV	AN	SB8
									Sheet 1 of 1
				onsulting Pty Ltd ted Phase 2 Environmental Investigation			IMBER:		SES_424 D: 29/09/2015
LOC	ATIC	DN:	184-	192 Restwell Road, Prairiewood			OMPLE		
				CTOR: N/A	LO	GGE	D BY:		A.S.
Drill Drilli				Hole Angle: Orientation:			Bore Si Co-ords		RL:
									Field Records
Method/ Casing	Depth (m)	Graphic Log	USCS Classification	type, colour/mottling, plasticity/particle size,secondary/minor components, soil origin	Moisture	Consistency	OId	Sampling	insitu testing, groundwater observations/regime, well construction details, additional information
	-			Turf and topsoil					
Hand Auger	0.50			Fill: Silty clay mixture, low plast, brown, moist, friable with gravels					
				Clay and gravel mixture, med plast, yellow/brown, moist, firm				_	
	1_			Silty gravel, poor grading, dark brown, moist, loose, prominent black gravels	M	L	0.0	*	SB8_0.8
				Sand, fine, wet, brown					
	1.50			End of hole			-	-	
								-	
	2						-		
	2.50 <u></u>						- - -	-	
	3_						-	-	
	3.50 <u></u>						-	-	
	4						-	-	
	4.50 <u></u>							-	
1	.	ł						-	
┣—	5	<u> </u>				L			

Borehole No: SB9

BOR	REHC	DLE	LOG	ì	~	SU	onmental se	An		SB9
									She	et 1 of 1
CLIE	ENT:	G	IW C	onsulting Pty Ltd	JO	B NU	IMBER:		SES_4	24
				ted Phase 2 Environmental Investigation	DA	TE C	OMME	NCE	D: 29/09/	2015
				192 Restwell Road, Prairiewood	DA	те с	OMPLE	TED): 29/09/	2015
				CTOR: N/A	LO	GGE	D BY:		А	.S.
Drill				Hole Angle:			Bore Si	ze:	RL:	
Drilli				Orientation:			Co-ords			
									Field Records	
	_	bo.	tior			Ś			insitu testin	g, groundwater
5	Depth (m)	Graphic Log	fica	type, colour/mottling, plasticity/particle size,secondary/minor components,	ē	Consistency		Sampling		ns/regime, well
sinç	pth	hde	CS Issi	soil origin	Moisture	JSiS	~	ldu	construction	details, additional
Method/ Casing	De	G	USCS Classification		οM	CO CO	DID	Sar	info	rmation
	-			_ Turf and topsoil						
L	-			Fill: Silty clay mixture, low plast, brown, moist, friable with			-			
nge	-			gravels			-			
٩Þ					М	F	0.2	X	SB9_0.3	
Hand Auger	-						-			
-	0.50									
				Clay and gravel mixture, med plast, yellow/brown, moist, firm						
	-						•			
	-									
	•	1						1		
	.	1						-		
1	1	<u> </u>			м	F	0.0	×	SB9_1.0	
		1		End of hole] •		
	.	1								
1	1 .	1						1		
	-						-			
	-						-	-		
	1.50						-	-		
	-									
							-			
	2_						-	-		
	-						-	-		
	2.50						•			
	2.50						-			
	-						-	-		
							-			
								_		
	3									
	-	1					-	1		
	•	1						1		
	•	1						1		
	.	1						-		
1	.	I						-		
1	3.50						_			
1		L								
	'	1						1		
	•	1						1		
	•	ł								
	.	1						-		
	4	1					-			
	.	1								
		1								
1	.	1								
1	•	1						1		
	•	ł								
	4.50	ł					-	-		
	.	1								
	Ι.	1								
		1								
1	'	1								
	5	1						1		
⊢	5	I	I		I			1	I	
1										

OR	EHO	DLE	LOG			SL			Borehole No: SB10
RO OC RIL	JEC ATIC	T: DN: DNT	Limit 184- RAC	onsulting Pty Ltd ted Phase 2 Environmental Investigation 192 Restwell Road, Prairiewood CTOR: N/A	DA DA	TE C	IMBER: OMMEI OMPLE D BY:		
	Mode ng Fl			Hole Angle: Orientation:			Bore Si Co-ords		RL:
Casing	Depth (m)		USCS Classification		Moisture	Consistency	OId	Sampling	Field Records insitu testing, groundwater observations/regime, well construction details, additiona information
				Turf, topsoil and sand					
	0.50			Fill: Clay with sand inclusions, med plast, red/grey mottled, moist, stiff/hard (compacted), minor cobble size gravels			- - -	-	
	1				м	St	0.2		SB10_0.9
				Natural: Silt, low plast, brown/green, wet, soft (old topsoil layer?)					
	1.50_			End of hole				-	
	2						-	-	
	2.50						- - -	-	
	3_						-	-	
	3.50 <u></u>							-	
	4						- - -	-	
	4.50						- - -	-	
	5							-	

Log	avati ged	By:		cto A	ULL vironmen or: A.S. A.S.	Ken Test	AN iences Coles Pit Ler	•		TEST Equipment: Bucket Size: Relative Lev Coordinates:	el:	ator	DC mRL mN	Projec	ct No: :	TP1 ne: Limited Phase 2 Environmental Investigation SES_424 GJW Consultancy 184-192 Restwell Road,
Date	e Sta e Fin	arte	d:	28	3/9/15 3/9/15	1631	. ר ת יית		0.5111	Permit No:	N.A.		mE	LUCAU	011.	Prairiewood NSW
Method	Support	S	M Penetration		Ground water Data and Comments	Depth (m)	Graphic Log	USCS Classification	partic colour; (type, p colour); geo	CRIPTION TYP cle size (with gra secondary & mir roportion, plastic moisture; consis logic origin (eg, i ium); additional d	ding, shape), or components ity/particle size, stency / density; iill, residual,	Moisture condition	Consistency / Relative Density	Sample Type	PID (ppm)	Sample ID, insitu testing, additional information
Excavator						0.5			some coa metal sh	Clay, med. plastici arse gravels, large eeting, minor plas chunks, fabric stra	timber pieces, tic scraps,	D	s	Grab	0.1	TP1_0.5 (QC1)
						1.0			End of pi	it on large metal sl	neets					
						1.5										
						2.0 2.5										
						3.0										
						3.5										
						4.0										
						4.5										

Log Che	iged ecked	d By:	A.S. A.S.		Coles Pit Len Pit Wic	•		TEST Equipment: Bucket Size: Relative Leve Coordinates:		ator	nRL mN	Projec	ct No: :	TP2 e: Limited Phase 2 Environmental Investigation SES_424 GJW Consultancy 184-192 Restwell Road, Pariniwand NGW
		arted: ished	28/9/15 28/9/15					Permit No:	N.A.		mΕ			Prairiewood NSW
Method	Support	s M H Penetration	к Ground water Data and Comments	Depth (m)	Graphic Log	USCS Classification	partic colour; s (type, p colour); geo	CRIPTION TYPE le size (with grad secondary & min roportion, plastici moisture; consis logic origin (eg, f ium); additional c	ding, shape), or components ity/particle size, tency / density; ill, residual,	Moisture condition	Consistency / Relative Density	Sample Type	PID (ppm)	Sample ID, insitu testing, additional information
Excavator				0.5 1.0			buried ch	Clay, med. plasticit nair, plastic scraps, bricks at approx. 1	foam, golf ball	Μ	S	Grab	0.0	TP2 1.4
				1.5 2.0				light brown Silty Clay, low plas it @ 2m	t. grey/brown					
				2.5										
				3.0										
				3.5										
				4.0										
				4.5										

Log Che Dat	avat ged eckeo e Sta e Fin	By: d By: arted	:	2	ULL vironmer or: A.S. A.S. 8/9/15 8/9/15	Test	AN iences Coles Pit Ler Pit Wic	•		TEST Equipment: Bucket Size: Relative Leve Coordinates: Permit No:		ator	mRL	Projec	ct No: :	TP3 ne: Limited Phase 2 Environmental Investigation SES_424 GJW Consultancy 184-192 Restwell Road, Prairiewood NSW
Method	Support		H Penetration	К	Ground water Data and Comments	Depth (m)	Graphic Log	USCS Classification	partio colour; (type, p colour); geo	CRIPTION TYPE cle size (with grac secondary & min roportion, plastici moisture; consis logic origin (eg, f ium); additional c	ling, shape), or components ity/particle size, tency / density; ill, residual,	Moisture condition	Consistency / Relative Density	Sample Type	PID (ppm)	Sample ID, insitu testing, additional information
Excavator		S	H			0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5			concrete rubber h scrap me	Clay, low plasticity chunks, glass/plas ose, wire, cardboa ttal and sheeting, s it @ 1.3m	tic bottles, rd, metal cans,	D	s	Grab	0.0	TP3_0.4

			(S er	SULL	IV.	AN			TES1 Equipment:	3.5 T Excav		C		ct Narr	TP4 ne: Limited Phase 2 Environmental Investigation
Log Che Dat	ged gecke ecke e Sta e Fir	By d I art	/: 3y: ed:		2	tor: A.S. A.S. 28/9/15 28/9/15	Test	Coles Pit Ler Pit Wid			Bucket Size: Relative Leve Coordinates: Permit No:		1	mRL mN mE	Projec Client Locati		SES_424 GJW Consultancy 184-192 Restwell Road, Prairiewood NSW
Method	Support		:	H Penetration	R	Ground water Data and Comments	Depth (m)	Graphic Log	USCS Classification	partic colour; (type, p colour); geo	CRIPTION TYPI cle size (with grac secondary & min roportion, plastici moisture; consis logic origin (eg, f rium); additional c	ling, shape), or components ity/particle size, tency / density; ill, residual,	Moisture condition	Consistency / Relative Density	Sample Type	PID (ppm)	Sample ID, insitu testing, additional information
Excavator							0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0			with min rock) Metal sh	Clay, low plasticity for refuse (brick, bi neeting it @ 2.1m		D	5	Grab	0.2	TP4_1.0

			(S	ULL	.IV	AN			TES ⁻ Equipment:	T PIT 3.5 T Excav		C		ct Nam	TP5A ne: Limited Phase 2
Log Che Dat	avat ged ecked e Sta e Fin	By d B arte	: by: ed:	ontr	act		Ken Test	Coles Pit Ler Pit Wid	•		Bucket Size Relative Lev Coordinates Permit No:	vel:		mRL mN mE	Projec Client Locati	:	Environmental Investigation SES_424 GJW Consultancy 184-192 Restwell Road, Prairiewood NSW
Method	Support	S	M Denotration		R	Ground water Data and Comments	Depth (m)	Graphic Log	USCS Classification	partic colour; (type, p colour); geo	roportion, plasti	ading, shape), nor components city/particle size, stency / density; fill, residual,	Moisture condition	Consistency / Relative Density	Sample Type	PID (ppm)	Sample ID, insitu testing, additional information
Excavator N		S	N				0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5			roots, wi rubbish,	Clay, low plasticit ith minor coarse g rubber hose		M	F	Grab	0.1	TP5A_0.8

		(E			11/					ΓΡΙΤ					TP5B
Log Che Dat	avat Iged ecked e Sta e Fin	By: d By arted	: :	tract	tor: A.S. A.S. 28/9/15 28/9/15	Ken Test	Coles Pit Ler Pit Wic	•	E 2m F 0.5m C	Equipment: Bucket Size: Relative Lev Coordinates Permit No:	el:		mRL	Projec	ct No:	e: Limited Phase 2 Environmental Investigation SES_424 GJW Consultancy 184-192 Restwell Road, Prairiewood NSW
Method	Support	S	H Penetration	R	Ground water Data and Comments	Depth (m)	Graphic Log	USCS Classification	particle colour; se (type, pro colour); m geolo	portion, plastic	ding, shape), nor components city/particle size, stency / density; fill, residual,	Moisture condition	Consistency / Relative Density	Sample Type	PID (ppm)	Sample ID, insitu testing, additional information
Excavator						0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5			soft, minor Large block Fill: Clay, Id	s of black morta w plast, dark gr eed plast, white	rs, timber pieces r ey/black	м	F	Grab	0.2	TP5B_1.5

			(C				IV.							C	-		TP6A
Log Che Dat	cavat gged ecke ce Sta ce Fir	B d	y: By: ted	:		ہ ہ 28	vironmer Dr: A.S. A.S. 8/9/15 8/9/15	Test	Coles Pit Ler Pit Wid	•		Equipment: Bucket Size: Relative Leve Coordinates: Permit No:	el:		mRL mN mE	_	ct No:	e: Limited Phase 2 Environmental Investigation SES_424 GJW Consultancy 184-192 Restwell Road, Prairiewood NSW
Method	Support			H Penetration	L L L		Groundwater Data and Comments	Depth (m)	Graphic Log	USCS Classification	partic colour; (type, p colour); geo	CRIPTION TYP cle size (with grac secondary & min roportion, plastic moisture; consis plogic origin (eg, f rium); additional d	ding, shape), or components ity/particle size, tency / density; ill, residual,	Moisture condition	Consistency / Relative Density	Sample Type	PID (ppm)	Sample ID, insitu testing, additional information
Excavator N			<u>0</u> M		<u>-</u> α			0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5	0		Natural:	Clay, low plasticity < concrete chunks, ose, minor plastic Clay, med. plast, g t t 0 1.7m	metal picket, scrap in top 1m	2				No sample

Log Che Dat	avati Iged eckeo e Sta e Fin	By: d B arte	y: d:	ntra	acte	ULL or: A.S. A.S. 8/9/15 8/9/15	Ken Test	AN iences Coles Pit Ler Pit Wic	•		TEST Equipment: Bucket Size: Relative Leve Coordinates: Permit No:		ator	mRL	Projec	ct No: :	TP6B e: Limited Phase 2 Environmental Investigation SES_424 GJW Consultancy 184-192 Restwell Road, Prairiewood NSW
Method	Support	S	M Penetration	H clouding	r	Groundwater Data and Comments	Depth (m)	Graphic Log	USCS Classification	partic colour; (type, p colour); geo	CRIPTION TYPE cle size (with grad secondary & min roportion, plastici moisture; consis logic origin (eg, fi ium); additional c	ling, shape), or components ty/particle size, tency / density; ill, residual,	Moisture condition	Consistency / Relative Density	Sample Type	PID (ppm)	Sample ID, insitu testing, additional information
Excavator							0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0			timber p	Clay, low plasticity, ieces, plastic scrap, it @ 0.5m		М	F	Grab	0.1	TP68_0.4

Exca Logg Chec	ed E	By:	ontra	A	JLL ronmen r: .S. .S.	Test	AN ences Coles Pit Len Pit Wic	•		TEST Equipment: Bucket Size: Relative Leve Coordinates:		ator	nRL	Projec	t No:	TP7A e: Limited Phase 2 Environmental Investigation SES_424 GJW Consultancy 184-192 Restwell Road,
Date Date					/9/15 /9/15					Permit No:	N.A.		mΕ			Prairiewood NSW
Method	Support		H Penetration	-	Groundwater Data and Comments	Depth (m)	Graphic Log	USCS Classification	partic colour; (type, p colour); geo alluv	CRIPTION TYPI cle size (with grad secondary & min roportion, plastici moisture; consis logic origin (eg, f ium); additional c	ling, shape), or components (ty/particle size, tency / density; ill, residual, observations	Moisture condition	Consistency / Relative Density	Sample Type	PID (ppm)	Sample ID, insitu testing, additional information
Excavator Met	Sup	<u>ω</u> Ψ	<u>т</u> а		Grou	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5	Gra	USC	Fill: Silty white sul metal pip line pole,	Clay, low plasticity, bstance (fungus), la pe, large concrete t i timber, tree brand it @ 0.5m	, brown, dry, arge rusted block, washing	a Moi	- Consi Densi	San	0.0 0.0	TP7A_0.3

Log Che Dat	avat ged eckeo e Sta e Fin	By: d B arte	y: 9:	ontra	2	or: A.S. A.S. 8/9/15 8/9/15	Test	AN iences Coles t Pit Ler t Pit Wic	•	2m	TEST Equipment: Bucket Size: Relative Leve Coordinates: Permit No:		ator	mRL	Projec	ct No: :	TP7B ne: Limited Phase 2 Environmental Investigation SES_424 GJW Consultancy 184-192 Restwell Road, Prairiewood NSW
or Method	Support	S	M Denatration	т	ц	Groundwater Data and Comments	Depth (m)	Graphic Log	USCS Classification	partic colour; ; (type, p) colour); geo alluv Fill: Silty of dry, conc	CRIPTION TYPE le size (with grad secondary & min roportion, plastici moisture; consis logic origin (eg, f ium); additional c Clay, low plasticity, rete chunks, broke	ling, shape), or components ty/particle size, tency / density; ill, residual, bservations	Moisture condition	Consistency / Relative Density	Sample Type	PID (ppm)	Sample ID, insitu testing, additional information
Excavator							0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0			pipe	it @ 0.5m on existi						No sample

Log	avati ged	By:			A.S.	Test	AN iences Coles Pit Ler	•		Equipment: Bucket Size: Relative Leve	el:	ator	mRL	Projec Projec Client	ct No:	TP8 ne: Limited Phase 2 Environmental Investigation SES_424 GJW Consultancy
Dat	eckeo e Sta e Fin	arte	d:	2	A.S. 28/9/15 28/9/15	lest	Pit Wid	in:	0.5m	Coordinates: Permit No:	N.A.		mN mE	Locati	on:	184-192 Restwell Road, Prairiewood NSW
Method	Support	S	M Penetration	R	Groundwater Data and Comments	Depth (m)	Graphic Log	USCS Classification	partic colour; (type, p colour); geo alluv	CRIPTION TYPI cle size (with grac secondary & min roportion, plastic moisture; consis logic origin (eg, f rium); additional c	ding, shape), or components ity/particle size, tency / density; ill, residual, observations	Moisture condition	Consistency / Relative Density	Sample Type	PID (ppm)	Sample ID, insitu testing, additional information
Excavator						0.5 1.0 1.5			Fill: Hard aggregat	Clay, low plasticity xture, moist 	rry and ground)	М	F	Grab	0.0	TP8_0.4
						2.0 2.5										
						3.0 3.5 4.0										
						4.5										

Appendix D Site Photos

Photo 1: Facing north - Main building used as a sports clubhouse.

Photo 2: Facing northwest – Site is used as a car park across much of the open spaces.

Photo 3: Facing south – The northern end of the soil mounds with the eastern boundary fence to the left. Note concrete slurry aggregate waste.

Photo 4: Facing southwest – Test pit 1 (TP1) example of waste types in the soil mounds.

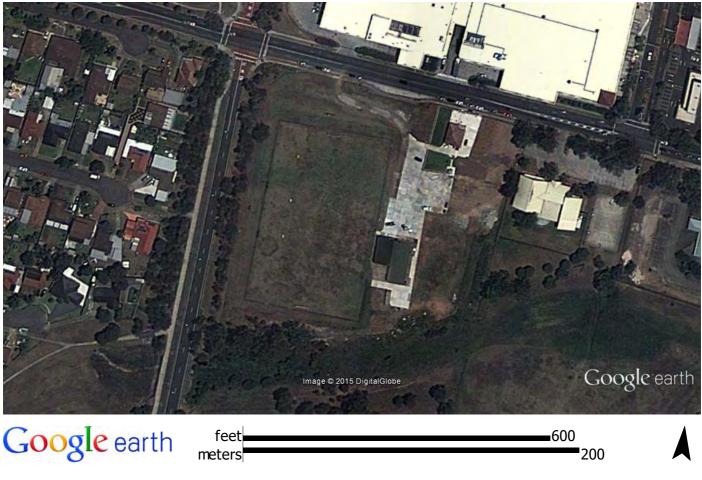
Photo 5: Test pit 6B (TP6B) where asbestos was detected. There were no obvious potential asbestos containing materials present such as fibro sheeting. Other anthropogenic waste materials are present.

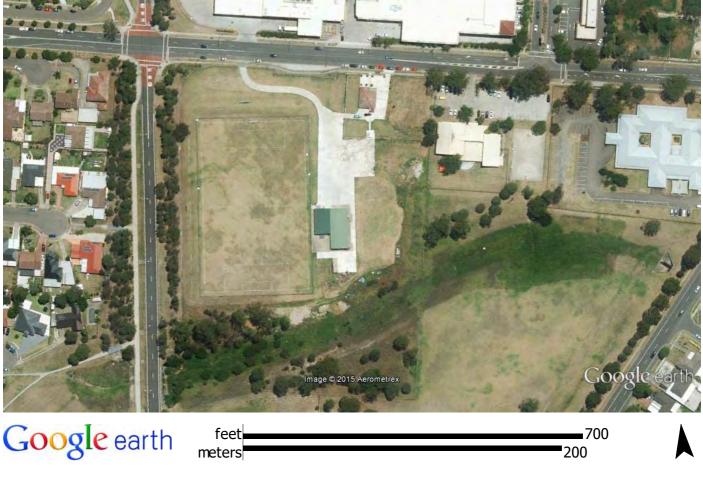
Photo 6: Facing south – Test pit 2 (TP2) example of waste materials buried in the soil mounds. Riparian zone is in the background.

Ε

Appendix E Aerial Imagery

*





feet meters

100

Appendix F Section 149 Certificate

F

Fairfield City Council, Administration Centre, 86 Avoca Road, Wakeley 2176 Tel: (02) 9725 0222 Fax: (02) 9725 4249 ABN: 83 140 439 239 All communications to: Fairfield City Council, PO Box 21, Fairfield NSW 1860 Email address: mail@fairfieldcity.nsw.gov.au

1 October 2015

Sullivan Environmental Services Pty Ltd PO Box 5248 TURRAMURRA NSW 2074

Dear Sir/ Madam

Following is your Planning Certificate as requested. Should you have any further queries please contact Council's City and Community Development Group on (02) 9725 0821.

PLANNING CERTIFICATE

(under section 149 of the Environmental Planning and Assessment Act 1979 as amended)

Applicant:	
Certificate No.:	
Applicant's Reference	e:
Issue Date:	
Receipt No.:	

Sullivan Environmental Services Pty Ltd 35598/2015 Adam Sullivan 1 October 2015 2348080

PROPERTY ADDRESS: LEGAL DESCRIPTION: 184-192 Restwell Road PRAIRIEWOOD Lot: 7 Sec: E DP: 6934

Alan Young City Manager Fairfield City Council

for

PLEASE NOTE: This is page 1 of 21. Should this Planning Certificate or any subsequent copy not contain this many pages, please confirm with Council prior to acting on the basis of information contained in this certificate.

Information provided under Section 149(2) of the Environmental Planning and Assessment Act 1979

Notes:

- (1) The following prescribed matters may apply to the land to which this certificate relates.
- (2) Where this certificate refers to a specific allotment (or allotments) within a strata plan, the certificate is issued for the whole of the land within the strata plan, not just the specific allotment(s) referred to, and any information contained in the certificate may relate to the whole, or any part, of the strata plan.
- (3) The following information is provided pursuant to Section 149(2) of the Environmental Planning and Assessment Act 1979 as prescribed by Schedule 4 of the Environmental Planning and Assessment Regulation 2000 and is applicable as at the date of this certificate.
- (4) Information provided in this certificate should be interpreted in conjunction with the relevant plans, policies and documents held at Council. In order to obtain copies of these documents you may purchase them by either contacting Council's City and Community Development Group on (02) 9725 0821 or attending Council's Administration Centre at 86 Avoca Road, Wakeley.

1. Names of relevant planning instruments and DCPs

(1) The name of each environmental planning instrument that applies to the carrying out of development on the land.

State Environmental Planning Policies (SEPP)

SEPP (Major Development) 2005

SEPP (Miscellaneous Consent Provisions) 2007

SEPP No. 50 - Canal Estate Development

SEPP No. 19 - Bushland in Urban Areas

SEPP No. 32 - Urban Consolidation (Redevelopment of Urban Land)

SEPP (State and Regional Development) 2011

SEPP No. 33 - Hazardous and Offensive Development

SEPP No. 64 - Advertising and Signage

SEPP (Repeal of Concurrence and Referral Provisions) 2008

SEPP No. 55 - Remediation of Land

SEPP No. 65 - Design Quality of Residential Flat Development

SEPP (Affordable Rental Housing) 2009

SEPP (Mining, Petroleum Production and Extractive Industries) 2007

SEPP No. 62 - Sustainable Aquaculture

SEPP (Infrastructure) 2007

SEPP (Exempt and Complying Development Codes) 2008

Regional Environmental Plans (Deemed SEPP)

Sydney Regional Environmental Plan No. 9 - Extractive Industry (No 2-1995)

The Greater Metropolitan Regional Environmental Plan No. 2 - Georges River Catchment

Local Environmental Plans (LEP)

Fairfield Local Environmental Plan 2013 Published on NSW Legislation Website: 17/05/2013. In Force from: 31/05/2013. As Amended.

(2) The name of each proposed environmental planning instrument that will apply to the carrying out of development on the land and that is or has been the subject of community consultation or on public exhibition under the Act (unless the Director-General has notified the council that the making of the proposed instrument has been deferred indefinitely or has not been approved)

Draft SEPP (Competition) 2010

(3) The name of each development control plan that applies to the carrying out of development on the land.

The land is subject to adopted Development Control Plans. (See attached schedule).

The Prairiewood Town Centre Masterplan applies to this land. The Masterplan provides the strategic direction for future development of the site with a focus on integrated mix of housing, employment and cultural activities; whilst providing a high degree of non-vehicular movement linking the transport, community facilities, institutions and shops and places of employment with respect to the natural landscape.

(4) In this clause, proposed environmental planning instrument includes a planning proposal for a LEP or a draft environmental planning instrument.

2. Zoning and land use under relevant LEP

For each environmental planning instrument or proposed instrument referred to in clause 1 (other than a SEPP or proposed SEPP) that includes the land in any zone (however described):

(a) WHAT IS THE IDENTITY OF THE ZONE?

Zone RE1 Public Recreation

(b) WHAT IS PERMITTED WITHOUT DEVELOPMENT CONSENT?

Environmental protection works; Markets.

(c) WHAT IS PERMITTED ONLY WITH DEVELOPMENT CONSENT?

Boat building and repair facilities; Boat launching ramps; Boat sheds; Building identification signs; Business identification signs; Camping grounds; Caravan parks; Charter and tourism boating facilities; Community facilities; Environmental facilities; Flood mitigation works; Function centres; Heliports; Information and education facilities; Jetties; Kiosks; Marinas; Mooring pens; Moorings; Recreation areas; Recreation facilities (indoor); Recreation facilities (major); Recreation facilities (outdoor); Restaurants or cafes; Roads; Water recreation structures; Water recycling facilities; Water supply systems; Wharf or boating facilities.

(d) WHAT IS PROHIBITED?

Any development not specified in item (b) or (c).

(a) WHAT IS THE IDENTITY OF THE ZONE?

Zone B4 Mixed Use

(b) WHAT IS PERMITTED WITHOUT DEVELOPMENT CONSENT?

Environmental protection works; Home-based child care; Home occupations.

(c) WHAT IS PERMITTED ONLY WITH DEVELOPMENT CONSENT? Boarding houses; Child care centres; Commercial premises; Community facilities; Educational establishments; Entertainment facilities; Function centres; Hotel or motel accommodation; Information and education facilities; Medical centres; Passenger transport facilities; Recreation facilities (indoor); Registered clubs; Respite day care centres; Restricted premises; Roads; Seniors housing; Shop top housing; Any development not specified in item (b) or (d).

(d) WHAT IS PROHIBITED?

Agriculture; Air transport facilities; Airstrips; Animal boarding or training establishments; Attached dwellings; Biosolids treatment facilities; Boat building and repair facilities; Boat launching Boat sheds: Camping grounds; Caravan parks: ramps: Cemeteries; Charter and tourism boating facilities; Crematoria; Depots; Dual occupancies; Dwelling houses; Eco-tourist facilities; Environmental facilities; Exhibition villages; Extractive industries; Farm buildings; Farm stay accommodation; Forestry; Freight transport facilities; Heavy industrial storage establishments; Helipads: Home businesses; Home industries; Home occupations (sex services); Industrial retail outlets; Industrial training facilities; Industries; Jetties; Marinas; Mooring pens; Moorings; Mortuaries; Multi dwelling housing; Open cut mining; Recreation facilities (major); Research stations; Resource recovery facilities; Rural industries; Rural workers' dwellings; Secondary dwellings; Semidetached dwellings; Sewage treatment plants; Sex services premises; Storage premises; Transport depots; Truck depots; Vehicle body repair workshops; Warehouse or distribution centres: Waste disposal facilities; Water recreation structures; Water recycling facilities;

Water supply systems; Wharf or boating facilities; Wholesale supplies.

Additional uses that are permitted with development consent.

There are no additional uses permitted with consent.

(e) Whether any development standards applying to the land fix minimum land dimensions for the erection of a dwelling house on the land and, if so, the minimum land dimensions so fixed. No development standards that fix the minimum land dimensions for the erection of a dwelling house apply to this land. Controls in other policies and plans may apply.

(f) Whether the land includes or comprises critical habitat.

No.

(g) Whether the land is in a conservation area (however described).

No

(h) Whether an item of environmental heritage (however described) is situated on the land.

No.

Attention is drawn however to Clause 5.10(5) of Fairfield Local Environmental Plan 2013:

"The consent authority may, before granting consent to any development:

(a) on land on which a heritage item is located, or

(b) on land that is within a heritage conservation area, or

(c) on land that is within the vicinity of land referred to in paragraph (a) or (b),

require a heritage management document to be prepared to assess the extent to which the carrying out of the proposed development would affect the heritage significance of the heritage item or heritage conservation area concerned."

2A. Zoning and land use under State Environmental Planning Policy (Sydney Region Growth Centres) 2006

Not applicable.

3. Complying development

(1) The extent to which the land is land on which complying development may be carried out under each of the codes for complying development because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4) 1.18 (1) (c3) and 1.19 of State Environmental Planning Policy (Exempt and Complying Development Codes) 2008.

General Housing Code:

No. The General Housing Code does not apply to this land.

Housing Alterations Code:

Complying development under the Housing Alterations Code may only be carried out on that part of the land zoned B4.

Commercial and Industrial Alterations Code: Complying development under the Commercial and Industrial Alterations Code may only be carried out on that part of the land zoned B4.

Commercial and Industrial (New Buildings and Additions) Code: Complying Development under the Commercial and Industrial (New Buildings and Additions) Code may only be carried out on that part of the land zoned B4.

Subdivision Code:

Complying development under the Subdivision Code may only be carried out on that part of the land zoned B4.

Rural Housing Code: No. The Rural Housing Code does not apply to this land.

General Development Code:

Complying development under the General Development Code may only be carried out on that part of the land zone B4.

Demolition Code:

Complying development under the Demolition Code may only be carried out on that part of the land zoned B4.

Fire Safety Code:

Complying development under the Fire Safety Code may only be carried out on that part of the land zoned B4.

(2) The extent to which complying development may not be carried out on that land because of the provisions of clauses 1.17A (1) (c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of that Policy and the reasons why it may not be carried out under those clauses.

Complying Development may not be carried out on that part of the land zoned RE1 – Public Recreation and is reserved for a public purpose.

(3) If the council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land, a statement that a restriction applies to the land, but it may not apply to all of the land, and that council does not have sufficient information to ascertain the extent to which complying development may or may not be carried out on the land. Council does not have any relevant statement to make in relation to any further restrictions that may apply to complying development being carried out on the land. All information in relation to the extent that complying development can be carried out on the land is provided under Part 3(1) & (2) of this certificate.

Note: Clause 3 refers only to land based exclusions as listed in Clauses 1.17A (1)(c) to (e), (2), (3) and (4), 1.18 (1) (c3) and 1.19 of the SEPP (Exempt and Complying Development Codes) 2008. To be complying development, the development must be complying development that meets the standards and other requirements specified for that development as required by the SEPP. Please contact your accredited certifier or Council for further information.

4. Coastal Protection

Whether or not the land is affected by the operation of section 38 or 39 of the *Coastal Protection Act* 1979, but only to the extent that the council has been notified by the Department of Public Works.

No, this land is not affected.

4A Information relating to beaches and coasts

(1) Whether an order has been made under Part 4D of the Coastal Protection Act 1979 in relation to emergency coastal protection works (within the meaning of that Act) on the land (or on public land adjacent to that land), except where the council is satisfied that such an order has been fully complied with.

No order under Part 4D of the *Coastal Protection Act* 1979, has been made.

- (2)
- whether the council has been notified under section 55X of the Coastal Protection Act 1979 that emergency coastal protection works (within the meaning of that Act) have been placed on the land (or on public land adjacent to that land), and

Council has not received any such notification.

2. if works have been so placed—whether the council is satisfied that the works have been removed and the land restored in accordance with that Act.

Not applicable.

(3) such information (if any) as is required by the regulations under section 56B of the Coastal Protection Act 1979 to be included in the planning certificate and of which the council has been notified pursuant to those regulations.

No such information is available.

4B Annual charges for coastal protection services under Local Government Act 1993.

Whether the owner (or any previous owner) of the land has consented in writing to the land being subject to annual charges under section 496B of the Local Government Act 1993 for coastal protection services that relate to existing coastal protection works (within the meaning of section 553B of that Act).

Note: "Existing coastal protection works" are works to reduce the impact of coastal hazards on land (such as seawalls, revetments, groynes and beach nourishment) that existed before the commencement of section 553B of the Local Government Act 1993.

No annual charges under section 553B of the *Local Government Act* 1993, are applicable to the land.

5. Mine Subsidence

Whether or not the land is proclaimed to be a mine subsidence district within the meaning of section 15 of the *Mine Subsidence Compensation Act* 1961.

No, this land is not affected.

6. Road widening and road realignment

Whether or not the land is affected by any road widening or road realignment under Division 2 or Part 3 of the *Roads Act* 1993, any environmental planning instrument, or any resolution of the council.

The land is not affected by any road widening proposal under Division 2 of Part 3 of the Roads Act or Fairfield Local Environmental Plan 2013.

The land is affected by provisions restricting vehicular access. For further details contact Council's City Services Department.

7. Council and other public authority policies on hazard risk restrictions

Whether or not the land is affected by a policy:

(b) adopted by the council, or

(c) adopted by any other public authority and notified to the council for the express purpose of its adoption by that authority being referred to in planning certificates issued by the council,

that restricts the development of the land because of the likelihood of land slip, bushfire, tidal inundation, subsidence, acid sulfate soils or any other risk, other than flooding.

Council's policies on hazard risk restrictions are as follows:

(i) Landslip

Under Fairfield Local Environmental Plan 2013, the land is not affected by a policy adopted by Council or adopted by any other public authority and notified to Council (for the express purpose of its adoption by that authority being referred to in Planning Certificates issued by Council) that restricts development on the land because of the likelihood of landslide risk or subsidence.

(ii) Bushfire

Council has been supplied by the NSW Rural Fire Service with a hazard map for the purposes of a bush fire risk management plan applying to land within the Fairfield local government area. Based on that map, it appears the land referred to in this certificate is not bush fire prone as defined in section 4 of the Environmental Planning and Assessment Act 1979.

(iii) Tidal Inundation

The land is not affected by a policy adopted by Council or adopted by any other public authority and notified to Council (for the express purpose of its adoption by that authority being referred to in Planning Certificates issued by Council) that restricts development on the land because of the likelihood of tidal inundation.

(iv) Subsidence

No, the land is not so affected

(v) Acid Sulfate Soils

The land is not affected by a policy adopted by Council or adopted by any other public authority and notified to Council (for the express purpose of its adoption by that authority being referred to in Planning Certificates issued by Council) that restricts development on the land because of the likelihood of acid sulfate soils.

(vi) Any other risks

No, the land is not so affected

7A. Flood related development controls information

 Whether or not development on that land or part of the land for the purposes of dwelling houses, dual occupancies, multi dwelling housing or residential flat buildings (not including development for the purposes of group homes or seniors housing) is subject to flood related development controls.

This land is subject to the flood related development controls included in the Fairfield City-Wide Development Control Plan 2013 in relation to the above development types. These controls apply (either directly, or indirectly by reference in site-specific DCPs) to all land in the Fairfield Local Government Area.

Generally, development controls will apply to development if the land (or part of the land) is within the floodplain or is affected by overland flooding.

Based on the information currently available to Council, this land is not affected by mainstream flooding. However, this is subject to future flood studies and reviews.

Part or all of this land is within the floodplain and may be affected by local overland flooding. This parcel is not in an area in which Council's current programme of overland flood risk mapping has been completed. The term local overland flooding means inundation by local runoff rather than overbank discharge from a stream, river, estuary, lake or dam.

Whether or not development on that land or part of the land for any other purpose is subject to flood related development controls. This land is subject to the flood related development controls included in the Fairfield City-Wide Development Control Plan 2013 in relation to the above development types. These controls apply (either directly, or indirectly by reference in site-specific DCPs) to all land in the Fairfield Local Government Area.

Generally, development controls will apply to development if the land (or part of the land) is within the floodplain or is affected by overland flooding.

Based on the information currently available to Council, this land is not affected by mainstream flooding. However, this is subject to future flood studies and reviews.

Part or all of this land is within the floodplain and may be affected by local overland flooding. This parcel is not in an area in which Council's current programme of overland flood risk mapping has been completed. The term local overland flooding means inundation by local runoff rather than overbank discharge from a stream, river, estuary, lake or dam.

The flood information is the current information to date. However, Council reviews flood studies on an on-going basis and new information may become available in future. Please contact Council's Natural Resources Branch on 9725 0222 for any updated information.

Note:

3. Words and expressions in this clause have the same meanings as in the instrument set out in the Schedule to the Standard Instrument (Local Environmental Plans) Order 2006.

8. Land reserved for acquisition

Whether or not any environmental planning instrument or proposed environmental planning instrument referred to in clause 1 makes provision in relation to the acquisition of the land by a public authority, as referred to in section 27 of the Act.

The land is not reserved for acquisition under Fairfield Local Environmental Plan 2013.

9. Contributions plans

The name of each contributions plan applying to the land.

Fairfield City Council Direct (Section 94) Development Contributions Plan 2011 applies to this land.

Fairfield City Council Indirect (Section 94A) Development Contributions Plan 2011 applies to all land within the City of Fairfield.

9A. Biodiversity certified land

Is the land biodiversity certified land (within the meaning of Part 7AA of the Threatened Species Conservation Act 1995?

The land is not biodiversity certified land.

10. Biobanking agreements

If the land is land to which a biobanking agreement under Part 7A of the Threatened Species Conservation Act 1995 relates, a statement to that effect (but only if the council has been notified of the existence of the agreement by the Director-General of the Department of Environment, Climate Change and Water).

No such agreement applies to the land.

11. Bush fire prone land

Whether all, or part, of the land is bush fire prone land (as defined in the Environmental Planning and Assessment Act 1979).

Council has been supplied by the NSW Rural Fire Service with a hazard map for the purposes of a bush fire risk management plan applying to land within the Fairfield local government area. Based on that map, it appears the land referred to in this certificate is not bush fire prone as defined in section 4 of the Environmental Planning and Assessment Act 1979.

12. Property vegetation plans

Whether or not the land is land to which a property vegetation plan under the Native Vegetation Act 2003 applies (but only if the council has been notified of the existence of the plan by the person or body that approved the plan under the Act).

No

13. Orders under Trees (Disputes between Neighbours) Act 2006

Whether an order has been made under the Trees (Disputes between Neighbours) Act 2006 to carry out work in relation to a tree on the land (but only if the council has been notified of the order).

No

14. Directions under Part 3A

If there is a direction by the Minister in force under section 75P (2) (c1) of the Act that a provision of an environmental planning instrument prohibiting or restricting the carrying out of a project or a stage of a project on the land under Part 4 of the Act does not have effect, a statement to that effect identifying the provision that does not have effect.

No such direction applies to the land.

15. Site compatibility certificates and conditions for seniors housing

If the land is land to which State Environmental Planning Policy (Housing for Seniors or People with a Disability) 2004 applies:

- (a) a statement of whether there is a current site compatibility certificate (seniors housing),of which the council is aware in respect of proposed development on the land and, if there is a certificate, the statement is to include:
 - (i) the period for which the certificate is current, and
 - (ii) that a copy may be obtained from the head office of the Department of Planning, and

No such certificate applies to the land.

(b) a statement setting out any terms of a kind referred to in clause 18 (2) of that Policy that have been imposed as a condition of consent to a development application granted after 11 October 2007 in respect of the land.

No such terms apply to the land.

16. Site compatibility certificates for infrastructure

A statement of whether there is a valid site compatibility certificate (infrastructure), of which the council is aware in respect of proposed development on the land and, if there is a certificate, the statement is to include:

- (a) the period for which the certificate is valid, and
- (b) that a copy may be obtained from the head office of the Department of Planning.

No such certificate applies to the land.

17. Site compatibility certificates and conditions for affordable rental housing

- (1) A statement to the whether there is a current site compatibility certificate (affordable rental housing), of which the council is aware, in respect of proposed development on the land and, if there is a certificate, the statement is to include:
 - (a) the period for which the certificate is current, and
 - (b) that a copy may be obtained from the head office of the Department of Planning.

No such certificate applies to the land.

(2) A statement setting out any terms of a kind referred to in clause 17(1) or 38(1) of State Environmental Planning Policy (Affordable Rental Housing) 2009 that has been imposed as a condition of consent to a development application in respect of the land.

No such terms apply to the land.

18. Paper subdivision information

- (1) The name of any development plan adopted by a relevant authority that applies to the land or that is proposed to be subject to a consent ballot.
- (2) The date of any subdivision order that applies to the land.
- (3) Words and expressions used in this clause have the same meaning as they have in Part 16C of this Regulation.

No such plan or order applies to the land

19. Site verification certificates

A statement of whether there is a current site verification certificate, of which the council is aware, in respect of the land and, if there is a certificate, the statement is to include:

(a) the matter certified by the certificate, and

Note: A site verification certificate sets out the Director-General's opinion as to whether the land concerned is or is not biophysical strategic agricultural land or critical industry cluster land—see Division 3 of Part 4AA of State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007.

- (b) the date on which the certificate ceases to be current (if any), and
- (c) that a copy may be obtained from the head office of the Department of Planning and Infrastructure.

No such certificate applies to the land

Note: The following matters are prescribed by section 59 (2) of the Contaminated Land Management Act 1997 as additional matters to be specified in a planning certificate:

- (a) that the land to which the certificate relates is significantly contaminated land within the meaning of that Act—if the land (or part of the land) is significantly contaminated land at the date when the certificate is issued,
- (b) that the land to which the certificate relates is subject to a management order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,
- (c) that the land to which the certificate relates is the subject of an approved voluntary management proposal within the meaning of that Act—if it is the subject of such an approved proposal at the date when the certificate is issued,
- (d) that the land to which the certificate relates is subject to an ongoing maintenance order within the meaning of that Act—if it is subject to such an order at the date when the certificate is issued,
- (e) that the land to which the certificate relates is the subject of a site audit statement within the meaning of that Act—if a copy of such a statement has been provided at any time to the local authority issuing the certificate.

Continuously updated information in relation to the above matters can also be found by searching the records of the Environmental Protection Authority (EPA) at the website of the EPA. The search page can be found at: <u>http://www.epa.nsw.gov.au/prcImapp/searchregister.aspx</u>.

The following information is available to Council but may not be current:

Council has adopted by resolution a policy (commencing 1 August 2000), on contaminated land which may restrict the development of land. This policy is implemented when zoning or land use changes are proposed on lands which have previously been used for certain purposes. Consideration of Council's adopted policy and the application of provisions under the State Legislation is warranted.

The land is not within an investigation area or remediation site under Part 3 of the Contaminated Land Management Act 1997. The land is not subject to an investigation order or a remediation order within the meaning of the Contaminated Land Management Act 1997.

The land is not subject to a voluntary investigation proposal (or voluntary remediation proposal) that is the subject of the Environment Protection Authority's agreement under Section 19 or 26 of the Contaminated Land Management Act 1997.

The land is not subject of a site audit statement within the meaning of the Contaminated Land Management Act 1997.

Note 2: Any advice received by Council pursuant to section 26(2) of the Nation Building and Jobs Plan (State Infrastructure Delivery) Act 2009, is included below.

No such certificate applies to the land.

The following additional information is provided under Section 149(5) of the Environmental Planning and Assessment Act 1979

Note:

(1) When information pursuant to section 149(5) is requested, the Council is under no obligation to furnish any of the information supplied herein pursuant to that section. Council draws your attention to section 149(6), which states that a Council shall not incur any liability in respect of any advice provided in good faith pursuant to subsection (5). The absence of any reference to any matter affecting the land shall not imply that the land is not affected by any matter not referred to in this certificate.

Council is in receipt of information by the NSW National Parks and Wildlife Service indicating the land either contains or is in close proximity to an area possibly containing remnant vegetation associated with a Cumberland Plains Endangered Ecological Community that is listed under the Threatened Species Conservation Act. On request Council will supply such information available from its records; however, interested parties must take and rely on their own advice and enquiries.

Information from NSW National Parks and Wildlife Service indicates that the land either contains or is in close proximity to an area possibly containing remnant vegetation associated with a Cumberland Plain Endangered Ecological Community. NPWS have identified the community as Cumberland Plain Woodland (Shale Hills Woodland, Shale Plains Woodland) that is listed as endangered under Pt. 3 Sch. 1 of the NSW Threatened Species Conservation the Act 1995 and **Commonwealth Environmental Protection and Biodiversity Conservation** Act 1999.

NPWS mapping indicates that the remnant vegetation is part of an area that is greater than 0.5 hectares with tree cover with agriculture but no major urban or suburban development.

The attached Flood Information Sheet provides flood levels where they are available together with other relevant flooding information.

The land is subject to the provisions of Clause 5.9 - Preservation of trees or vegetation, under Fairfield Local Environmental Plan 2013.

Land must not be cleared or filled except with the consent of Council.

The applicant's attention is drawn to the Department of Infrastructure, Planning and Natural Resources map at the 1:100,000 scale 'Salinity Potential in Western Sydney 2002' that indicates there is potential for salinity in the Region. The map can be viewed at Council's Customer Service Centre (86 Avoca Road Wakeley). Council's policy 'Building in Saline Environments', applies to all areas of Fairfield City and requires use of construction measures and materials in new development to minimise risk of salt damage to buildings from urban salinity.

On 15th April 2014, the Australian Government announced that it intends to proceed with an airport at Badgerys Creek in the Liverpool City Council area. The original Environmental Impact Statement prepared for the airport site in the late 1990's included options and aircraft flight paths that impact on various parts of Fairfield City. At this stage, Council does not have any up-to-date information regarding the Badgerys Creek Airport. You should make your own enquiries with the Commonwealth Government Department responsible via the website http://www.infrastructure.gov.au/aviation.

Clause 2.7 of Fairfield Local Environmental Plan 2013 requires development consent for the demolition of a building or work.

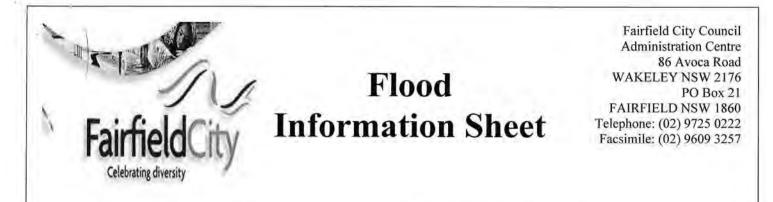
FAIRFIELD CITY COUNCIL DEVELOPMENT CONTROL PLANS – 5 August 2015

Fairfield City Wide DCP

Title	Adopted by Council*	Effective Date
Fairfield CityWide Development Control Plan 2013	13 November 2012	31 May 2013
Amendment No.1 change maximum height permissible for detached secondary dwellings, clarify requirements and correct various anomalies, incorporate outdoor dining policy into a number of site specific DCPs (see table below)	11 February 2014	5 March 2014
Amendment No.2 amend chapter 2 to reference Site Specific DCP – Wetherill Park Market Town	20 March 2013	7 March 2014
Amendment No.3 Introduce Chapter 4B - Secondary Dwellings in Rural Area - Horsley Park and Cecil Park	11 December 2013	14 March 2014
Amendment No. 4 amends Chapter 9 Industrial Development Site Specific Controls for 449 Victoria Street and 96 Newton Road, Wetherill Park	24 September 2013	21 March 2014
Amendment No.5 amends Chapters 2 and 10 and Appendix B to ensure provisions within the DCP are in line with the SEPP (Exempt and Complying Development Codes) 2008.	13 May 2014	28 May 2014
Amendment No. 5A amends Chapter 6A – Multi Dwelling Housing – Town house and Villas: Site Specific DCP – 46 & 50 Cobbett Street, Wetherill Park.	12 March 2013	22 August 2014
<u>Amendment No. 6</u> including increase to building heights for detached granny flats, removal of reference to minimum lot sizes for R1 zoned lands, inclusion of new controls and provisions relating to neighbourhood shops and pad mounted sub stations, clarify requirements and correct a number of anomalies associated with secondary dwellings, dual occupancy, narrow lots and residential flat buildings and other minor inconsequential amendments.	12 August 2014	3 September 2014
Amendment No. 6A amends Chapter 14 Subdivision – Applying to land located on 630 Elizabeth Drive and 9-10 Schubert Place, Bonnyrigg Heights to facilitate a future road link between Stivala Place and Schubert Place.	12 August 2014	3 September 2014
Amendment No.7 proposed amendments include – Additional Controls for Child Care Centres, Boarding Houses and Granny Flats; Revised Heritage Chapter; New provisions relating to CCTV for specific land uses, and; Acoustic measures for development in the Rural Area.	25 November 2014	3 December 2014
Amendment No. 7A amends Chapter 10 Miscellaneous Development - applying to land located on 1 Bartley Street, Cabramatta to facilitate the development of a hotel or motel accommodation at the Cabravale Diggers site.	26 August 2014	16 January 2015
Amendment 8 amends Chapter 9 – Industrial Development. This amendment includes provisions for industrial/employment development proposals in close proximity to residential land. The amended controls cover the following issues: General Design Requirements (including setback considerations, driveways, loading and storage areas, etc); Bulk and scale; Vehicular and Pedestrian Access Privacy; Light Spill; Noise and Vibration; and Landscaping.	10 March 2015	1 April 2015
Amendment 9 includes new provisions relating to various forms of residential development including: Building Appearance, Landscaping, Private Open space, Minimum Lot Width, Car Parking Rates and Notification of S82A Applications.	12 May 2015	27 May 2015
 Amendment 10 including amendments to: the intent of the Development Control Plan and Development Application process - the DA Guide provisions for rural zone development residential flat building setbacks heritage advice road classifications 	14 July 2015	5 August 2015

Place Based and Site Specific DCPs

Title	Adopted by Council*	Effective Date
 Bonnyrigg Town Centre DCP.28(2010) <u>Amendment No.1</u> (Awning controls and amendment to area subject to Bonnyrigg Town centre DCP – 3.11.2010) <u>Amendment No.2</u> (Outdoor Dining Controls –5.3.2014) 		28 May 2004
Cabramatta Town Centre DCP (5/2000) - <u>Amendment No.1</u> (Outdoor Dining Controls –5.3.2014) - <u>Amendment No. 2</u> (New clause regarding Model Submission – 3.09.2014)	13 November 2012	31 May 2013
 Fairfield City Centre DCP 2013 <u>Amendment No.1</u> (Outdoor Dining Controls – 5.3. 2014) <u>Amendment No. 2</u> (Remove reference to PublicArt Guide and update signage controls reference – 3.09.2014) 	13 November 2012 je	31 May 2013
 Canley Corridor DCP No.37 (2013) (Canley Vale and Canley Heights town centres) <u>Amendment No.1</u>: (Development Controls for Adams Reserve 12.9.2006) <u>Amendment No.2</u>: (Development Controls for 45-47 Peel St, Canley Heights 9.4.2008) <u>Amendment No.3</u>: (Awnings controls 3.11.2010) <u>Amendment No.4</u>: (Development Controls for 190 Canley Vale Rd, Canley Heights 19.4.2011) <u>Amendment No.5</u>: (References to Fairfield LEP 2013 31.5.2013) <u>Amendment No.6</u>: (Outdoor Dining Controls –5.3.2014) <u>Amendment No.7</u> (Remove reference to Public Art Guide – 3.09.2014) <u>Amendment No.8</u> (Include 46 Derby Street, Canley Heights into Town Centro Catchment – 01.07.2015). 	13 November 2012	31 May 2013
Fairfield Heights Local Centre DCP 2013	13 November 2012	31 May 2013
Prairiewood Town Centre – Southern Precinct DCP 2013	13 November 2012	31 May 2013
Site Specific DCP – Wetherill Park Market Town	20 March 2013	7 March 2014


Master Plans

Title	Adopted by Council*	Effective Date
Prairiewood Masterplan (December 2005)	13 November 2012	31 May 2013
Fairfield Town Centre Masterplans – The Crescent and Barbara Street Precincts (May 2007)		May 2007

Structure Plans

Title	Adopted by Council*	Effective Date
Villawood Town Centre		February 2008

* Note: Some "In Force" Development Control Plans may be under review, check with Council for date of last amendment.

Applicant's Details:

Applicant's	Sullivan Environmental
Name	Services Pty Ltd
Postal	PO Box 5248
Address	TURRAMURRA NSW 2074
Phone	
Fax	

Property Particulars:

House No.	184 - 192	
Street &	Restwell Road	
Suburb	PRAIRIEWOOD	
Lot	Lot: 7	
Description	Sec:E	
	DP: 6934	

Council has adopted a policy on flooding which may restrict the development of land. The Fairfield City-Wide Development Control Plan 2013 (which includes provisions for flood management) applies to all of the Fairfield Local Government area.

Part or all of this land may be affected by local overland flooding.

LOCAL OVERLAND FLOODING

Description

Part or all of the land may be affected by local overland flooding. This parcel is **not** in an area covered by overland flood risk mapping completed by Council.

An overland flood notation may be placed on a property based on information from a number of sources. Typical sources include: information from residents, investigation of local drainage problems and hydraulic analysis of local catchments by engineering consultants and Council staff.

Local Overland Flood Details

A preliminary analysis of this catchment to quantify the amount of stormwater in the vicinity of this property **has not** been carried out.

Size of Flood	Flood Level (m AHD)	Flow (m ³ /s)	Velocity (m/s)
Probable Maximum Flood (PMF)	Not Known	Not Known	Not Known
100 Year ARI	Not Known	Not Known	Not Known
50 Year ARI	Not Known	Not Known	Not Known
20 Year ARI	Not Known	Not Known	Not Known

2 October 2015

Glossary over page

GLOSSARY

m AHD	metres Australian Height Datum (AHD).
Australian Height Datum (AHD)	A common national plane of level approximately equivalent to the height above sea level. All flood levels, floor levels and ground levels are normally provided in metres AHD.
Average Recurrence Interval (ARI)	The long term average number of years between the occurrence of a flood as big as the selected event. For example, floods with a discharge as great as the 20 year ARI event will occur on average once every 20 years. ARI is another way of expressing the likelihood of occurrence of a flood event.
flood	A relatively high stream flow that overtops the natural or artificial banks in any part of a stream, river, estuary, lake or dam. It also includes local overland flooding associated with major drainage before entering a watercourse, or coastal inundation resulting from raised sea levels, or waves overtopping the coastline.
flood risk precinct	An area of land with similar flood risks and where similar development controls may be applied by a Council to manage the flood risk. The flood risk is determined based on the existing development in the precinct or assuming the precinct is developed with normal residential uses. Usually the floodplain is categorised into three flood risk precincts 'low', 'medium' and 'high', although other classifications can sometimes be used.
	High Flood Risk: This has been defined as the area of land below the 100-year flood event that is either subject to a high hydraulic hazard or where there are significant evacuation difficulties.
	Medium Flood Risk: This has been defined as land below the 100-year flood level that is not within a High Flood Risk Precinct. This is land that is not subject to a high hydraulic hazard or where there are no significant evacuation difficulties.
	Low Flood Risk: This has been defined as all land within the floodplain (i.e. within the extent of the probable maximum flood) but not identified within either a High Flood Risk or a Medium Flood Risk Precinct. The Low Flood Risk Precinct is that area above the 100-year flood event.
local overland flooding	The inundation of normally dry land by local runoff rather than overbank discharge from a stream, river, estuary, lake or dam.
mainstream flooding	The inundation of normally dry land occurring when water overflows the natural or artificial banks of a stream, river, estuary, lake or dam.
probable maximum flood (PMF)	The largest flood that could conceivably occur at a particular location.

G

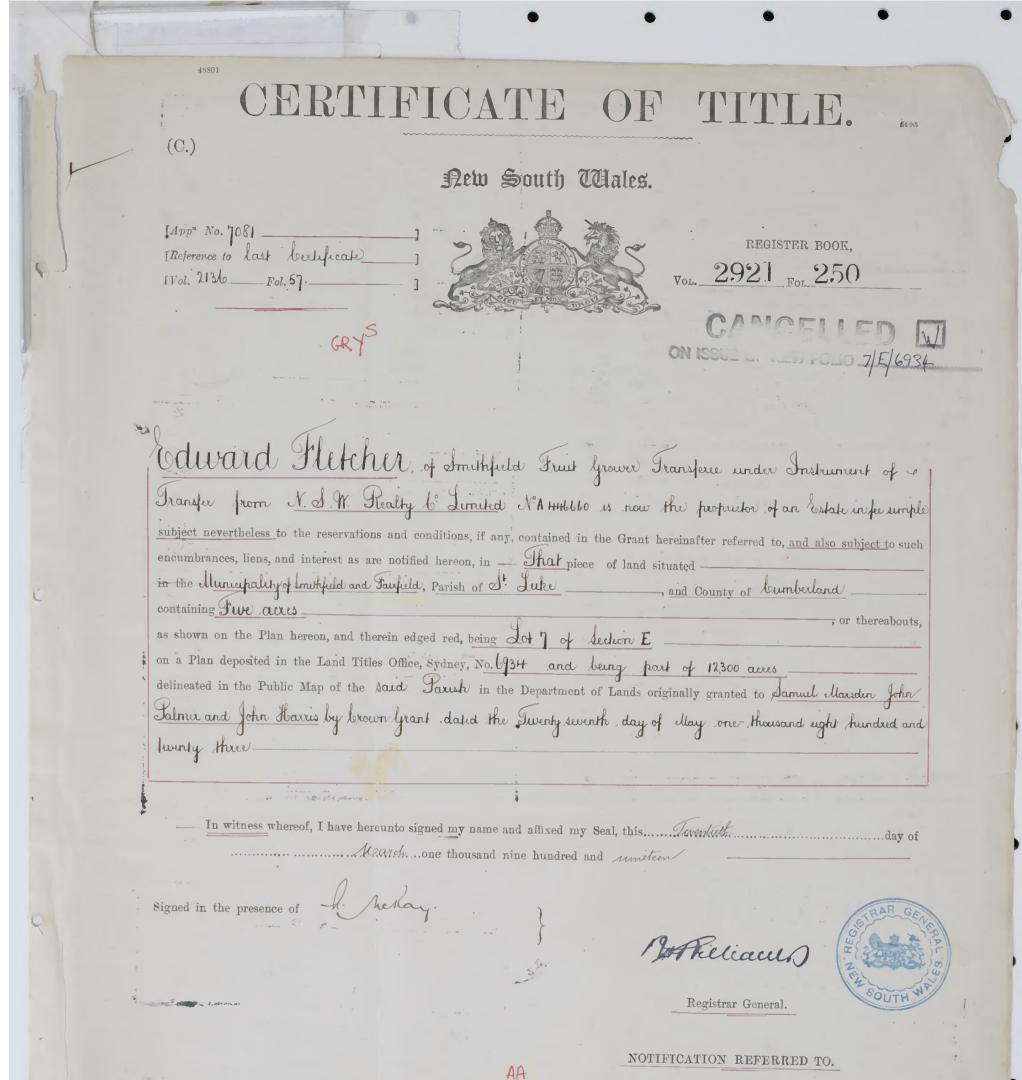
Appendix G Land Title Records

Land and Property Information Division

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY

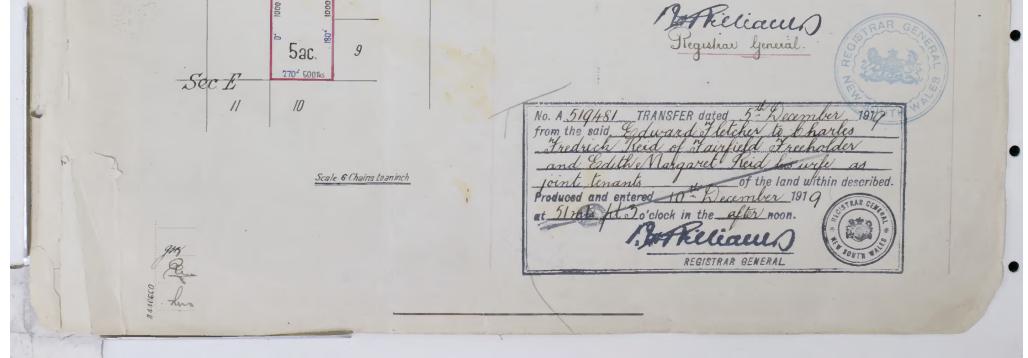
Telephone: 1300 052 637

A division of the Department of Finance & Services

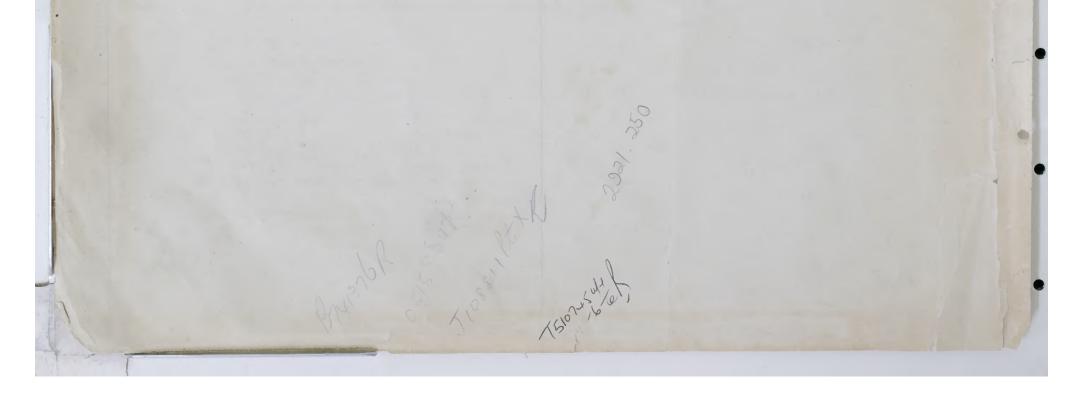

TITLE SEARCH

Title Reference: 1/1175636

		ARCH DATE		EDITION NO		
		10/2015	10:13 AM	1	31/8/2015	
LAN						
	PARISH OF S	RNMENT AREA	UNTY OF CUMBERLA	ND		
FIR	ST SCHEDULI	Ε				
	ABRIA COMMI	- JNITY CLUB L	тмтттр			
	ibitiii comit					
	OND SCHEDUI	LE (8 NOTIFI	CATIONS)			
			ITIONS IN THE CR	OWN GRANT(S)		
2	A446660	46660 CONDITIONS				
3	AG605095	MORTGAGE TO	PANBIC PTY LTD			
4	DP1175636			ETRE(S) WIDE AFF		
5			(S) ON THE USE C			
6	DP1175636			URPOSES 3 METRE(: SO BURDENED IN 1		
7	DP1175636	EASEMENT FO		BLES 3 METRE(S) N SO BURDENED IN 7		
8	DP1175636	RIGHT OF CA		E(S) WIDE AFFECT		
NOT.	ATIONS					
UNR	EGISTERED I	DEALINGS: NI	L			
	***]	END OF SEARC	H ***			


PRINTED ON 1/10/2015

* ANY ENTRIES PRECEDED BY AN ASTERISK DO NOT APPEAR ON THE CURRENT EDITION OF THE CERTIFICATE OF TITLE. WARNING: THE INFORMATION APPEARING UNDER NOTATIONS HAS NOT BEEN FORMALLY RECORDED IN THE REGISTER. Req:R459416 /Doc:CT 02921-250 CT /Rev:06-Oct-2015 /Sts:OK.OK /Prt:06-Oct-2015 16:54 /Seq:1 of 2 Ref: /Src:X


				M. 1M
1.62	RESTV	VELL RO		
		90° 500 lks		
	6	7	8	1
	U U	ks ks	0	

The above mentioned Instrument of Transfer NA HHbbble contains the following conditions: The land above described when built on must be finied and no advertisionent hoarding shall be crecked on the said land.

Req:R459416 /Doc:CT 02921-250 CT /Rev:06-Oct-2015 /Sts:OK.OK /Prt:06-Oct-2015 16:54 /Seq:2 of 2 Ref: /Src:X

No. A 137459 Caveat dated 10th September 1921. 2 3rd September 1921 Groduced and at 15 minu 1 oclo 121.12 afterno Stille The above mentioned laveats No A 737459 has lapsed. Dated 14th January 1929 Vide B. 441376 Registra Lon 40. BY4-1376. TRANSFER dated 27 October Mangaret Reid to Marsard Henry James Comp Of Boss ley Park, applied steres of the land within described 5 November 1928 al 2 1190**n**. REGISTRAR GENERAL ATH W No. C515834 TRANSFER dated 20th Hebrugan 193 from the said Edward Henry James Compton to Unitherry Gauce Commonly known as anthony Gauch of Berally Parts, Carrier, of the land within described Produced 26th. Lebruary 1937 and entered 10th March 1937 o'clock in the nuon. at_ These 10 REGISTRAR GENERAL. 10- TrossII Concab produced, Wither gain, 962 510745 28-7-1983 REGISTERED PROPRIETOR Calabria Community Transfer + 510746-Roquit 1-mitet Bla 28-4-1983 SER. REGISTRAR GENERAL STULL 1 NO FURTHER COMPLITER FOLIO DEALINGS TO BE REGISTERED.

Land and Property Information Division

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY

Telephone: 1300 052 637

A division of the Department of Finance & Services

HISTORY OF TITLE TRANSACTION

Title Reference: 1/1175636

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----6/10/2015 4:24PM

FOLIO: 1/1175636

First Title(s): OLD SYSTEM
Prior Title(s): 7/E/6934

Recorded	Number	Type of Instrument	C.T. Issue
31/8/2015	DP1175636	DEPOSITED PLAN	FOLIO CREATED
			EDITION 1

*** END OF SEARCH ***

PRINTED ON 6/10/2015

Land and Property Information Division

ABN: 84 104 377 806 GPO BOX 15 Sydney NSW 2001 DX 17 SYDNEY

Telephone: 1300 052 637

A division of the Department of Finance & Services

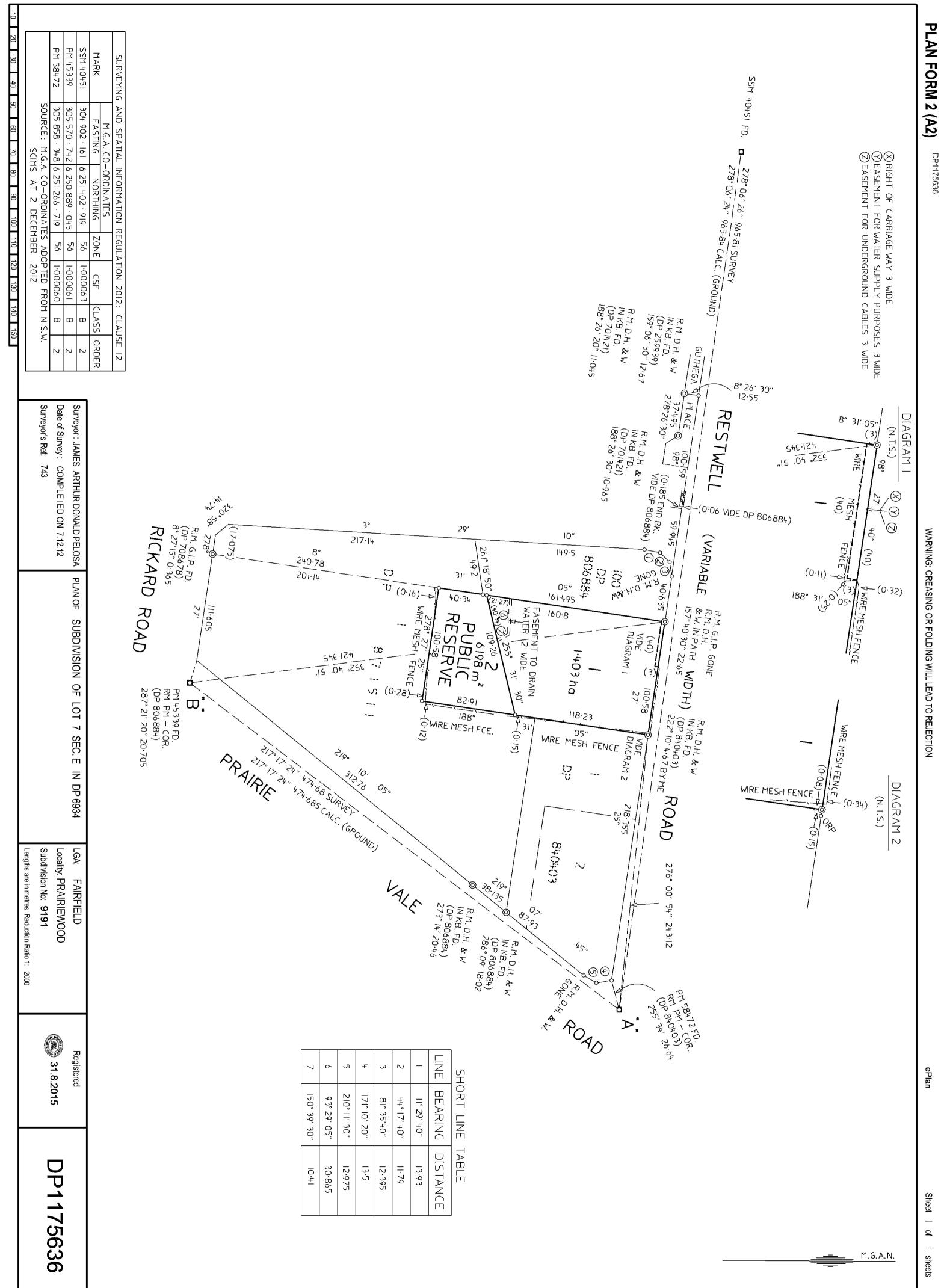
HISTORY OF TITLE TRANSACTION

Title Reference: 7/E/6934

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----6/10/2015 4:52PM

FOLIO: 7/E/6934



First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 2921 FOL 250

Recorded	Number	Type of Instrument	C.T. Issue
16/9/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
31/10/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
31/1/1992	E227726	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 1
8/12/1992	E960541	MORTGAGE	EDITION 2
9/10/2002 9/10/2002	9018397 9018398	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 3
12/8/2004 12/8/2004	AA872729 AA872767	NOTICE OF DEATH TRANSFER OF MORTGAGE	EDITION 4
21/12/2006 21/12/2006	AC828657 AC828658	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 5
12/2/2008	AD760074	MORTGAGE	EDITION 6
24/11/2009 24/11/2009	AF139938 AF139939	VARIATION OF MORTGAGE VARIATION OF MORTGAGE	EDITION 7
5/8/2011	AG415340	CAVEAT	
3/11/2011	AG597133	WITHDRAWAL OF CAVEAT	
8/11/2011 8/11/2011	AG605094 AG605095	DISCHARGE OF MORTGAGE MORTGAGE	EDITION 8
31/8/2015	DP1175636	DEPOSITED PLAN	FOLIO CANCELLED

*** END OF SEARCH ***

PRINTED ON 6/10/2015

Req:R459141 /Doc:DP 1175636 P /Rev:01-Sep-2015 /Sts:SC.OK /Prt:06-Oct-201. Ref:34S#PgX:ALL /Seq:2 of 3

PLAN FORM 6 (2012) WARNING: Creasing or form	olding will lead to rejection
DEPOSITED PLAN AD	OMINISTRATION SHEET Sheet 1 of 2 sheet(s)
Office Use Only Registered: 31.8.2015 Title System: TORRENS	Office Use Only DP1175636
Purpose: SUBDIVISION	
PLAN OF SUBDIVISION OF LOT 7 SEC. E IN DP 6934	LGA: FAIRFIELD Locality: PRAIRIEWOOD Parish: ST. LUKE County: CUMBERLAND
Crown Lands NSW/Western Lands Office Approval I	Survey Certificate I, JAMES ARTHUR DONALD PELOSA
Signatures, Seals and Section 88B Statements should appear on PLAN FORM 6A	Surveyor's Reference: 743

Req:R459141 /Doc:DP 1175636 P /Rev:01-Sep-2015 /Sts:SC.OK /Prt:06-Oct-201. Ref:34S#Pg8:ALL /Seq:3 of 3

PLAN FORM 6A (201	<u>2) WARN</u>	ING: Creasing or fo	Iding wi	Il lead to rejection	GI IQII			
	DEPOSITED PLAN ADMINISTRATION SHEET Sheet 2 of 2 sheet(s)							
Registered: 🥮	31.8.2015	Office Use Only			Office Use Only			
PLAN OF SUBD	IVISION OF LOT 6934	7 SEC. E		DP117	5636			
Subdivision Certificate Date of Endorsement:	number: 9191 10 FEBRUAR		 A so State according Sign Any 	chedule of lots and addresses ements of intention to create a ordance with section 88B <i>Con</i> natures and seals- see 195D (
	Otra at a superior							
Lot1	Street number 184-190	Street name RESTWELL		Street type ROAD	Locality PRAIRIEWOOD			
2	192	RESTWELL		ROAD	PRAIRIEWOOD			
PURSUANT TO SEC. 88B OF THE CONVEYANCING ACT 1919 AS AMENDED IT IS INTENDED TO CREATE: 1. EASEMENT TO DRAIN WATER 2 WIDE 2. RESTRICTION ON USE OF LAND 3. EASEMENT FOR WATER SUPPLY PURPOSES 3 WIDE 4. EASEMENT FOR UNDERGROUND CABLES 3 WIDE 5. RIGHT OF CARRIAGE WAY 3 WIDE								
Executed by the Calabria Community Club Executed by Panbic Pty Ltd Limited GACN 002 228604) by CACN 034162 295) pursuant to 5.127 of the corporations Director Director								

Print Name Director Director Ausseppe Rights Reint Name Huymint TRAN Sole DIRECTOR,

If space is insufficient use additional annexure sheet

Surveyor's Reference: 743

ePlan

Instrument setting out terms of Easements or Profits a Prendre intended to be created or released and of Restrictions on the Use of land or Positive Covenants intended to be created pursuant to Section 88B Conveyancing Act 1919.

Lengths are in metres

DP1175636

(Sheet 1 of 4 Sheets)

Plan of Subdivision of Lot 7 Section E on Deposited Plan 6934 covered by Subdivision Certificate No.9191 dated 10 February 2015

Full name and address of the owner of the land:

Calabria Community Club Limited 184-192 Restwell Road, PRAIRIEWOOD NSW 2176

	Pa	irt 1	
Number of item shown in the intention panel on the plan	Identify of easement, profit a prendre, restriction or positive covenant to be created and referred to in the plan	Burdened lot(s) or parcel(s)	Benefited lot(s) road(s), bodies or Prescribed Authorities
1	Easement to Drain Water 2 wide	1	100 in DP 806884
2	Restriction on Use of Land	1	Fairfield City Council
3	Easement for Water Supply Purposes 3 wide	1	Sydney Water Corporation
4	Easement for Underground Cables 3 wide	1	Endeavour Energy
5	Right of Carriage Way 3 wide	1	Fairfield City Council

Approved by Fairfield City Council

Authorised Officer

DP1175636

ePlan

(Sheet 2 of 4 Sheets)

Plan of Subdivision of Lot 7 Section E on Deposited Plan 6934 covered by Subdivision Certificate No.9191 dated 10 February 2015

Part 2

1. Terms of Easement to Drain Water 2 wide firstly referred to in the above mentioned plan

Easement to drain water 2 wide. PROVIDED THAT such easement shall ipso facto cease to affect or burden the servient tenement immediately upon the termination of the four weekly periodic lease in respect to the land being Lot 100 Deposited Plan 806884, created by clause 9 of the Lease registered number E255296, between the Council of the City of Fairfield as Lessor and Calabria Community Club Limited as Lessee in respect to the said Lot 100 Deposited Plan 806884.

2. Terms of Restriction On Use of Land secondly referred to in the above mentioned plan

The designated floor level for habitable development of the lot hereby burdened shall be at least 0.5 metres above the 100 year flood level,

3. Terms of Easement for Water Supply Purposes 3 wide thirdly referred to in the above mentioned plan

The terms set out in Sydney Water Corporation Memorandum AE292281C are incorporated in this document

4. Terms of Easement for Underground Cables 3 wide fourthly referred to in the above mentioned plan

The terms set out in Memorandum No. 9262885 registered at Land and Property Information NSW, are incorporated in this document, subject to changing integral Energy Australia to Endeavour Energy in Clause 5.1

Approved by Fairfield City Council

Authorised Officer

ePlan

(Sheet 3 of 4 Sheets)

Plan of Subdivision of Lot 7 Section E on Deposited Plan 6934 covered by Subdivision Certificate No. 9191 dated 10 February 2015

<u>Name of Authority having the power to release vary or modify the</u> <u>Easement to Drain Water 2 wide, Restriction On Use of Land and Right of</u> <u>Carriage Way 3 wide firstly, secondly and fifthly referred to is:</u>

The Council of the City of Fairfield without the consent of any other person or persons provided that any such release, variation of modification shall, if approved, be made and done in all respects at the cost and expense of the person or persons requesting such release, variation or modification.

Signed on behalf of Endeavour Energy ABN 59 253 130 878 by its Attorney Pursuant to Power of Attorney Book 4677 No 686 in the presence of:

DP1175636

Signature of witness

Signature of attorney

IAN STEWART COUSIN Name of witness c/- Endeavour Energy

51 Huntingwood Drive Huntingwood NSW 2148 Name: Helen Smith Position: Manager Property & Fleet Date of execution: 12 January 2015. Reference: NRS2621

Approved by Fairfield City Council

ePlan

(Sheet 4 of 4 Sheets)

Plan of Subdivision of Lot 7 Section E on Deposited Plan 6934 covered by Subdivision Certificate No. 9191 dated 10 February 2015

Executed by the Calabria Community Club Limited (ACN-002 22/8 604) by

DP1175636

Director

Name (BLOCK LETTERS)

Directo

Rocco LEONELLO

Secretary

Name (BLOCK LETTERS)

Diréc 1 GLIO NSE

Inspected and Identified on behalf of Fairfield City Council

Nicoletta Diacopoulos Co-ordinator Engineering Assessment Delegate of Fairfield City Council

Executed by Panble Pty Ltd CACN 034 162245 pursuant to \$ 127 of the Corporations

Act 2001

inmm Directio

Full Darne: HWY MINH TRAN Approved by Fairfield City Council

-	
	secretary Director
Full	Name:

31.8.2015

Authorised Officer REGISTERED

Ref: /Src:X	STAMP DUTY	./Sts:OK.SC /Prt:06-Oct-201	5 17:06 /Pgs:ALL /Seq:1 of 2
•		PR 1503 15 09	1510746
		TRANSFER EAL PROPERTY ACT, 1900 tions for Completion on back of form	2 2 or V X
	C STAMP Stan DIITY	if Part Only, Delete Whole and Give Details	\$ >>> Location
DESCRIPTION OF LAND Note (a)	VOL. 2921	WHOLE	BOSSLEY PARK PARISH ST. LUKE
	FOL. 250		COUNTY CUMBERLAND
TRANSFEROR Note (b)	ANTHONY GAUCI (commonly Bossley Park, Carrier	known as Anthony Gauchi) c	þf
ESTATE Note (c)	(the abovenamed TRANSFEROR) hereby acknowledges re and transfers an estate in fee simple in the land above described to the TRANSFEREE	sceipt of the consideration of $200,000.00$	
TRANSFEREE Note (d)	CALABRIA COMMUNITY CLUB in New South Wales and 1 45A Oxford Road, Inglebu	LIMITED a company duly inc naving its registered offic urn.	corporated Office USE ONLY
TENANCY Note (e)	as joint tenants/tenants in common		
PRIOR ENCUMBRANCES Note (1)	subject to the following PRIOR ENCUMBRANCES 1	3.	
EXECUTION Note (g)	DATE A Horis 1983 We hereby certify the dealing to be correct for the purp Signed in my presence by the transferor who is personall	boses of the Real Property Act, 1900.	
Note (g)	Signed in my presence by the transferee who is personally	known to me	a Gauci Signature of Transferor
	Signature of Witness Name of Witness (BLOCK LETTERS) Address and occupation of Witness		J.A. BUI Solicitor Signagare of Transferce
TO BE COMPLETED	LODGED BY	0 LO	
BY LODGING PARTY Notes (h) and (i)			Herewith. In R.G.O. with Produced by
OFFICE USE ONLY	Delivery Box Number (54 0). Checked Passed REGISTERED 29-	<u>4-19</u> 5 3	Cert. of Title
	Signed Extra Fee	in the second	$ \mathcal{P} $
	Registrar Ger		

ef: /Src:X		1010/40	/Rev:24-Mar	-2011	/SLS.OK.S	ic /Pri		SC-20	LO LY.OO Maasay asyaa	/гуз.аш	/Seq:2 O
				874 9780 1 1944 1444 (26 - 19 - 16)							
					1						
in a state of a second seco Second second											
					1						
in the second											
		211AT3D			(H)	NUMBER DEALING	(5) _{NH}	170 N (T) 1977 (T)	(е) DIRECTION	IFIER	EOLIO IDEN
					I NAHTO QNA AJI	COND SCHEDI	35				
									a an an an an Anna. An an Anna an Anna		
							an Anna Anna An an Anna Anna Anna Anna A				
				der							
			월일 일 같은 것이 있었다. 1991년 - 1993년 - 1993년 1993년 - 1993년								
				e dan e							
				u de Ville Adria d							
											\mathbf{N}
a fi se Fisebaten Se statut									동산 제휴가 [동안 16] : -		
n an tha an t			가는 1996년 1985년 1987년 1998년 - 1987년 1987년 1987년 - 1987년 1								
											ال المراجع المحمد المراجع المراجع المحمد المحمد المستقد مستقد محمد المحمد ال
						and an ann an Air Airte an Airte					
								2			
					<u>i (Andre)</u> Rec Aller (C		амаи	(כ)	(B) DIRECTION	IFIER	
	<u>e series de la compo</u> nie de la componie de la componie La componie de la comp			SNO	HEDULE DIRECTIC						
				en part Repuert		<u> </u>		<u> </u>		<u>e e de la composition de la composition</u> Esta de la composition	
			기관은 가슴 소설한								

ORPORATION (V) If the transfer is services each person accesting the form of execution should include a statement that the services that of the security affixed, e.g., in accordance with the Articles (V) If the transfer is appointed by a corporation. Each person accesting the activity of execution (e.g., director, secretary) in the corporation. (iv) If the cransfer is executed pursuant to an authority (other than specified in (iii)) the form of execution must indicate the scatteory, judicial or other authority pursuant to which the transfer has been executed. YTIAOHTUA

 Should there by insufficient space for execution of this desling, use an annexure sheet.
 Should there by insufficient space for execution of this desling, use an annexure sheet.
 The certificate of correctors under the Real Property Act. 1900, much
 The certificate of correctors under the Real Property Act. 1900, much
 The solution for the tailing a party to the cataling, to whom he is personally known.
 The solution for the tail instrum.
 The solution for the tailing is previous under the solution in the pensities provided by social 112 of the feasi Property Act. 1900, must see cute the tail tail to the present of the tailing is previous the tailing is a party to the transforce may sign the correlate of the tailing is previded by social 112 of the feasi Property Act. 1900.
 Kiny person hasty or nogigardy reperty Act is transforce, the constorce, the constorce and a factorney for the tailing to the tailing to transforce may sign the correlated by social 112 of the feasi Property Act. 1900.
 Kiny person hasty or nogigardy repertying the pensities provided by social 112 of the feasi Property Act. 1900.
 Kiny personal back or nogigardy reperty facts that the pensities provided by social to the said power of attorney is the correct of attorney to the transformed to the tail tail tail to the tail **VITORNEY**

CENERALLY

(2) Execution:

() In the memorandum of prior encumbrances, state only the registered number of any mortgage, lease, charge or writ to which this dealing is subject.

(e) Delete if only one transferee. If more than one transferee, delete either "joint tenants" or "tenants in common", and, if the transferees hold as tenants in common, state the states in which they hold.

(d) Show the full name, address and occupation or description of the transferee(s).

(c) il the estate being transferred is a lesser escate than an estate in fee simple, delete "fee simple" and insert appropriate estate.

(b) Show the full name of the transferor(s).

(iii), LOCATION.---insert the locality shown on the Certificate of Title/Crown Grant, e.e., at Chullora: If the locality is not shown, insert the Parish and County, e.e.; Ph. Lismore Co. Rous.

(ii) PART/WHOLE. It part only of the land in the folio of the Register is being transferred, delete the word "WHOLE" and insert the lot and plan number, portion, &c. See also sections and XCL and STAWOLE" and insert the lot and plan number, portion, &c. See also sections and STA and STAWOLE" and insert the lot and plan number, portion, &c.

()) TORRENS TITLE REFERENCE.—For a manual reference insert the Volume and Folio (e.g., Vol. 8514 Fol. 126)—For a computer folio insert the folio identifier (e.g., 12/701924). Title references should be listed in numerical sequence.

:busi to noisginesed (s)

The following instructions relate to the SIDE NOTES on the form.

Rule up all blanks.

EL 9.

If it is intended to create easements, covenants, &c., use forms RPI3A, RPI3B, RPI3C as appropriate.

If the space provided is insufficient, additional sheets of the same size and quality of paper and having the same margins as this form should be used. Each additional sheet must be identified as an annexure and signed by the parties and the attesting witnesses. Alterations are not to be made by erasure: the words rejected are to be ruled through and initialled by the parties to the dealing.

Typewriting and handwriting should be clear, legible and in permanent non-copying ink.

This dealing should be marked by the Commissioner of Stamp Duties before lodgment by hand at the Registrar General's Office.

INSTRUCTIONS FOR COMPLETION

Appendix H WorkCover Dangerous Goods Licence Search

Н

WorkCover NSW 92–100 Donnison Street, Gosford, NSW 2250 Locked Bag 2906, Lisarow, NSW 2252 T 02 4321 5000 F 02 4325 4145 Customer Service Centre 13 10 50 DX 731 Sydney workcover.nsw.gov.au

21 September 2015

Attention: Adam Sullivan Sullivan Environmental Sciences Pty Ltd PO BOX 5248 Turramurra NSW 2074

Dear Mr Sullivan,

RE SITE: 182-192 Restwell Rd Prairiewood NSW

I refer to your site search request received by WorkCover NSW on 16 September 2015 requesting information on licences to keep dangerous goods for the above site.

A search of the Stored Chemical Information Database (SCID) and the microfiche records held by WorkCover NSW has not located any records pertaining to the above mentioned premises.

If you have any further queries please contact the Dangerous Goods Licensing Team on (02) 4321 5500.

Yours Sincerely

Brent Jones Senior Licensing Officer Dangerous Goods Team

Appendix I Field Sheets and Calibration Records

l

RENTALS

Equipment Report - MiniRAE 3000 PID

This Gas Meter has been performance checked and calibrated as follows:

Lamp	Compound	Concentrat	tion	Zero	Span	Traceability Lot #	Pass?
10,6 ev	Isobutylene	100	ppm	0-0 ppm	(00.0pm	Lot:1805792 Cyl:9	V
larm Limits			B	ump Test			
High	100 ppm			Date	Target Gas	Reading	Pass?
Low	50 ppm		2	5/09/2015	100 ppm	100,0 ppm	Ø
Electrical Safety Tag No: Valid to: ate:2 S igned: lease check that th inimum \$30 clean illed for at the full	atus (Min 5.5 volts Tag attached (AS 000/6 09/10 109/20 100/20 10	S/NZS 3760) 3 7/20/1 are received air charge ma n iRAE 2000 PI	and th y be a D / Op	pplied to any un	Data clear Filters che cleaned and dec clean or damage	ontaminated before re d items. Items not re	turn. A
rate: 2.5	$ \begin{array}{c c} $	tective yellow tective yellow to probe (attack are water trap arger 240V to dele and Trave truction Manua ck Guide She are Alkaline Ba he Moisture tra ibration regula a cable and S rry Case	rubber hed to filter(s 12V12 d Chan al behin et behin attery (ap Filte ator & t softwar electri	r boot PID)) Qty 250mA ger nd foam on the l ind foam on the l compartment wi er Guide Lamina tubing (optional) e CD (optional) ical safety (tag m	lid of case " lid of case " ith batteries ited	factor:	
igned:	Pro Pro Inle Cha Cha Cha Cha Cha Cha Cha Cha Cha Cha	tective yellow tective yellow to probe (attack are water trap arger 240V to dele and Trave truction Manua ck Guide She are Alkaline Ba he Moisture tra ibration regula a cable and S rry Case	rubbei hed to filter(s 12V12 Char al behi et behi attery (ap Filte ator & t softwar electri	r boot PID)) Qty 250mA ger nd foam on the l ind foam on the l ind foam on the l Compartment wi er Guide Lamina tubing (optional) e CD (optional) ical safety (tag m	lid of case " lid of case " ith batteries ited	factor:	
igned: TFS Refe Customer Refe	$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	tective yellow tective yellow to probe (attack are water trap arger 240V to dele and Trave truction Manua ck Guide She are Alkaline Ba he Moisture tra ibration regula a cable and S rry Case	rubbei hed to filter(s 12V12 el Char al behin et behin attery (ap Filte attery (ap Filte atter) (ap Filte (ap Filte) (ap Filte)	r boot PID)) Qty 250mA ger nd foam on the l ind foam on the l Compartment wi er Guide Lamina tubing (optional) e CD (optional) ical safety (tag m curn Date: turn Time:	lid of case " lid of case " ith batteries ated nust be valid)	factor:	
igned:	erence CSC	tective yellow tective yellow to probe (attack are water trap arger 240V to dele and Trave truction Manua ck Guide She are Alkaline Ba he Moisture tra ibration regula a cable and S rry Case	rubbei hed to filter(s 12V12 el Char al behin et behin attery (ap Filte attery (ap Filte atter) (ap Filte (ap Filte) (ap Filte)	r boot PID)) Qty 250mA ger nd foam on the l ind foam on the l ind foam on the l Compartment wi er Guide Lamina tubing (optional) e CD (optional) ical safety (tag m	lid of case " lid of case " ith batteries ated nust be valid)	factor:	

"We do more than give you great equipment... We give you great solutions!"

Phone: (Free	e Call) 1300 735 295	Fax: (Free Call) 1800 675 1	23 Em	Email: RentalsAU@Thermofisher.com	
Melbourne Branch 5 Carbbean Drive, Scoresby 3179	Sydney Branch Level 1, 4 Talavera Road, North Ryda 2113	Adulaide Branch 27 Beulah Road, Norwood, South Australia 5067	Brisbane Branch Unit 2/5 Ross St Newstead 4006	Perth Branch 121 Beringarta Ave Malaga WA 6090	
Issue 6		Nov 12		G0555	

RENTALS

Equipment Report – SOIL AUGER KIT

This soil auger kit has been cleaned and checked:

Date:	251	1091	2015	Checked by:	MILENKO	
Signed:				An	2	_

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent	Received	Returned	Item
	- 0		1 Regular Auger Head
B	- E	E	1 Clay Auger Head
	/ E	E	1 Sand Auger Head
1	- B	E	1 Tee Handle / Ratchet Handle
	III	E	Extension rods Qty:
V	- E	L5	1 Finger Ring for disconnecting extensions
X		E	Canvas carry bag
×		E1	Optional – straps for canvas carry bag
-	Ц	10	METAL CARRY BOX
Ē	Ū	Ð	
		E	
Proces	ssors Signatur	re/ Initials	MS

Quote Reference	CSO	2340	O Condition on return	
Customer Ref				
Equipment ID	AMS	7050		
Equipment serial no.				
Return Date	1	1		
Return Time				

"We do more than give you great equipment... We give you great solutions!"

Phone: (Free	e Call) 1300 735 295	Fax: (Free Call) 1800 675	Email: RentalsAU@Thermofisher.com		
Melbourne Branch 5 Caribbean Drive Scoresby 3179	Sydney Branch Level 1, 4 Talavera Road, North Ryde 2113	Adelaide Branch 27 Beulah Road, Norwood, South Australia 5067	Brisbane Branch Unit 2/5 Ross St Newstead 4006	Perth Branch 121 Beringarra Ave Malaga WA 6090	
lecuo 5		Son 11		G0559	

Appendix J Laboratory Analytical Reports

J

CERTIFICATE OF ANALYSIS

Work Order	ES1532447	Page	: 1 of 20
Client	SULLIVAN ENVIRONMENTAL SCIENCES	Laboratory	Environmental Division Sydney
Contact	: ADAM SULLIVAN	Contact	
Address	: PO Box 5248	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	TURRAMURRA NSW 2074		
E-mail	: adam@sullivan-es.com.au	E-mail	:
Telephone	:	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: SES_424	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:	Date Samples Received	: 29-Sep-2015 15:00
C-O-C number	:	Date Analysis Commenced	: 30-Sep-2015
Sampler	:	Issue Date	07-Oct-2015 12:04
Site	:		
		No. of samples received	: 25
Quote number	:	No. of samples analysed	: 20

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results

Page	: 2 of 20
Work Order	: ES1532447
Client	: SULLIVAN ENVIRONMENTAL SCIENCES
Project	: SES_424

NATA Accredited Laboratory 825	Signatorie
NATA ACCIEULEU LADOTALOTY 020	orginatoriot

Pabi Subba

Shaun Spooner

Shobhna Chandra

Accredited for compliance with

Signatories

ISO/IEC 17025.

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11. Signatories Position Accreditation Category Sydney Inorganics Senior Spectroscopist Celine Conceicao Organic Coordinator Sydney Inorganics Edwandy Fadjar

Senior Organic Chemist

Asbestos Identifier

Metals Coordinator

Sydney Inorganics

Sydney Inorganics

Sydney Organics Newcastle - Asbestos

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- \emptyset = ALS is not NATA accredited for these tests.
- EA200: As only one sample container was submitted for multiple tests, sub sampling was conducted on sample ES1532447 020 prior to Asbestos analysis. As this has the potential to understate detection, results should be scrutinised accordingly and NATA accreditation does not apply to analysis on this sample.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2

Page : 4 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP1_0.5	QC1	TP2_1.4	TP3_0.4	TP4_1.0
	Ci	ient sampliı	ng date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-001	ES1532447-002	ES1532447-003	ES1532447-004	ES1532447-005
				Result	Result	Result	Result	Result
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	10.8	12.3	16.8	11.0	13.0
EA200: AS 4964 - 2004 Identification	n of Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	No		No	No	
Asbestos Type	1332-21-4	-		-		-	-	
Sample weight (dry)		0.01	g	57.7		27.4	20.3	
APPROVED IDENTIFIER:		-		G.MORGAN		G.MORGAN	G.MORGAN	
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	9	8	9	11	22
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	17	14	24	20	22
Copper	7440-50-8	5	mg/kg	49	46	23	19	30
Lead	7439-92-1	5	mg/kg	69	82	25	19	44
Nickel	7440-02-0	2	mg/kg	13	13	10	8	13
Zinc	7440-66-6	5	mg/kg	110	124	48	43	86
EG035T: Total Recoverable Mercur								
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides								1
alpha-BHC	319-84-6	0.05	mg/kg					<0.05
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg					< 0.05
beta-BHC	319-85-7	0.05	mg/kg					<0.05
gamma-BHC	58-89-9	0.05	mg/kg					<0.05
delta-BHC	319-86-8	0.05	mg/kg					<0.05
Heptachlor	76-44-8	0.05	mg/kg					< 0.05
Aldrin	309-00-2	0.05	mg/kg					< 0.05
Heptachlor epoxide	1024-57-3	0.05	mg/kg					<0.05
Total Chlordane (sum)		0.05	mg/kg					< 0.05
trans-Chlordane	5103-74-2	0.05	mg/kg					<0.05
alpha-Endosulfan	959-98-8	0.05	mg/kg					<0.05
cis-Chlordane	5103-71-9	0.05	mg/kg					<0.05
Dieldrin	60-57-1	0.05	mg/kg					< 0.05
4.4`-DDE	72-55-9	0.05	mg/kg					<0.05
Endrin	72-20-8	0.05	mg/kg					<0.05
beta-Endosulfan	33213-65-9	0.05	mg/kg					<0.05
Endosulfan (sum)	115-29-7	0.05	mg/kg					<0.05

Page : 5 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP1_0.5	QC1	TP2_1.4	TP3_0.4	TP4_1.0
	Cl	ient samplii	ng date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-001	ES1532447-002	ES1532447-003	ES1532447-004	ES1532447-005
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
4.4`-DDD	72-54-8	0.05	mg/kg					<0.05
Endrin aldehyde	7421-93-4	0.05	mg/kg					<0.05
Endosulfan sulfate	1031-07-8	0.05	mg/kg					<0.05
4.4`-DDT	50-29-3	0.2	mg/kg					<0.2
Endrin ketone	53494-70-5	0.05	mg/kg					<0.05
Methoxychlor	72-43-5	0.2	mg/kg					<0.2
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg					<0.05
Sum of DDD + DDE + DDT		0.05	mg/kg					<0.05
EP068B: Organophosphorus Pes	ticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg					<0.05
Demeton-S-methyl	919-86-8	0.05	mg/kg					<0.05
Monocrotophos	6923-22-4	0.2	mg/kg					<0.2
Dimethoate	60-51-5	0.05	mg/kg					<0.05
Diazinon	333-41-5	0.05	mg/kg					<0.05
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg					<0.05
Parathion-methyl	298-00-0	0.2	mg/kg					<0.2
Malathion	121-75-5	0.05	mg/kg					<0.05
Fenthion	55-38-9	0.05	mg/kg					<0.05
Chlorpyrifos	2921-88-2	0.05	mg/kg					<0.05
Parathion	56-38-2	0.2	mg/kg					<0.2
Pirimphos-ethyl	23505-41-1	0.05	mg/kg					<0.05
Chlorfenvinphos	470-90-6	0.05	mg/kg					<0.05
Bromophos-ethyl	4824-78-6	0.05	mg/kg					<0.05
Fenamiphos	22224-92-6	0.05	mg/kg					<0.05
Prothiofos	34643-46-4	0.05	mg/kg					<0.05
Ethion	563-12-2	0.05	mg/kg					<0.05
Carbophenothion	786-19-6	0.05	mg/kg					<0.05
Azinphos Methyl	86-50-0	0.05	mg/kg					<0.05
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 6 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP1_0.5	QC1	TP2_1.4	TP3_0.4	TP4_1.0
	Cli	ent samplir	ng date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-001	ES1532447-002	ES1532447-003	ES1532447-004	ES1532447-005
			-	Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	vdrocarbons - Cont	inued						
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbon		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarl	hons							1
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction						
C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 7 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP1_0.5	QC1	TP2_1.4	TP3_0.4	TP4_1.0
	Cli	ent sampli	ing date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-001	ES1532447-002	ES1532447-003	ES1532447-004	ES1532447-005
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP068S: Organochlorine Pestic	ide Surrogate							
Dibromo-DDE	21655-73-2	0.05	%					107
EP068T: Organophosphorus Pe	sticide Surrogate							
DEF	78-48-8	0.05	%					75.2
EP075(SIM)S: Phenolic Compou	und Surrogates							
Phenol-d6	13127-88-3	0.5	%	109	100	103	94.8	97.3
2-Chlorophenol-D4	93951-73-6	0.5	%	104	96.6	98.4	90.7	93.5
2.4.6-Tribromophenol	118-79-6	0.5	%	118	99.3	102	82.6	90.8
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	110	99.6	103	94.9	100.0
Anthracene-d10	1719-06-8	0.5	%	111	101	103	95.4	100
4-Terphenyl-d14	1718-51-0	0.5	%	112	102	104	96.8	101
EP080S: TPH(V)/BTEX Surrogat	es							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	109	114	114	110	108
Toluene-D8	2037-26-5	0.2	%	112	114	110	110	111
4-Bromofluorobenzene	460-00-4	0.2	%	114	119	117	111	111

Page : 8 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP5B_1.5	TP6B_0.4	TP7A_0.3	TP8_0.4	SB1_0.4
	Cl	ient sampli	ng date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-007	ES1532447-008	ES1532447-009	ES1532447-010	ES1532447-011
				Result	Result	Result	Result	Result
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	24.5	16.0	15.1	16.4	14.0
EA200: AS 4964 - 2004 Identificatio	on of Asbestos in Soils	;						
Asbestos Detected	1332-21-4	0.1	g/kg	No	Yes		No	No
Asbestos Type	1332-21-4	-		-	Ch		-	-
Sample weight (dry)		0.01	g	50.0	57.4		40.9	42.9
APPROVED IDENTIFIER:		-		G.MORGAN	C.OWLER		C.OWLER	C.OWLER
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	12	19	10	10	17
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	17	27	19	26	36
Copper	7440-50-8	5	mg/kg	19	33	24	22	43
Lead	7439-92-1	5	mg/kg	63	32	37	36	35
Nickel	7440-02-0	2	mg/kg	6	18	13	14	14
Zinc	7440-66-6	5	mg/kg	106	76	105	62	94
EG035T: Total Recoverable Mercu			0.0					
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticide			0.0					
alpha-BHC	319-84-6	0.05	mg/kg			<0.05		
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg			<0.05		
beta-BHC	319-85-7	0.05	mg/kg			<0.05		
gamma-BHC	58-89-9	0.05	mg/kg			<0.05		
delta-BHC	319-86-8	0.05	mg/kg			<0.05		
Heptachlor	76-44-8	0.05	mg/kg			<0.05		
Aldrin	309-00-2	0.05	mg/kg			<0.05		
Heptachlor epoxide	1024-57-3	0.05	mg/kg			<0.05		
Total Chlordane (sum)		0.05	mg/kg			<0.05		
trans-Chlordane	5103-74-2	0.05	mg/kg			<0.05		
alpha-Endosulfan	959-98-8	0.05	mg/kg			<0.05		
cis-Chlordane	5103-71-9	0.05	mg/kg			<0.05		
Dieldrin	60-57-1	0.05	mg/kg			<0.05		
4.4`-DDE	72-55-9	0.05	mg/kg			<0.05		
Endrin		0.05	mg/kg			<0.05		
beta-Endosulfan	72-20-8	0.05	mg/kg			<0.05		
	33213-65-9	0.05	mg/kg			<0.05		
Endosulfan (sum)	115-29-7	0.00	ing/kg			~0.00		

Page : 9 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP5B_1.5	TP6B_0.4	TP7A_0.3	TP8_0.4	SB1_0.4
	Cl	ient sampli	ng date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-007	ES1532447-008	ES1532447-009	ES1532447-010	ES1532447-011
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
4.4`-DDD	72-54-8	0.05	mg/kg			<0.05		
Endrin aldehyde	7421-93-4	0.05	mg/kg			<0.05		
Endosulfan sulfate	1031-07-8	0.05	mg/kg			<0.05		
4.4`-DDT	50-29-3	0.2	mg/kg			<0.2		
Endrin ketone	53494-70-5	0.05	mg/kg			<0.05		
Methoxychlor	72-43-5	0.2	mg/kg			<0.2		
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg			<0.05		
^ Sum of DDD + DDE + DDT		0.05	mg/kg			<0.05		
EP068B: Organophosphorus Pes	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg			<0.05		
Demeton-S-methyl	919-86-8	0.05	mg/kg			<0.05		
Monocrotophos	6923-22-4	0.2	mg/kg			<0.2		
Dimethoate	60-51-5	0.05	mg/kg			<0.05		
Diazinon	333-41-5	0.05	mg/kg			<0.05		
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg			<0.05		
Parathion-methyl	298-00-0	0.2	mg/kg			<0.2		
Malathion	121-75-5	0.05	mg/kg			<0.05		
Fenthion	55-38-9	0.05	mg/kg			<0.05		
Chlorpyrifos	2921-88-2	0.05	mg/kg			<0.05		
Parathion	56-38-2	0.2	mg/kg			<0.2		
Pirimphos-ethyl	23505-41-1	0.05	mg/kg			<0.05		
Chlorfenvinphos	470-90-6	0.05	mg/kg			<0.05		
Bromophos-ethyl	4824-78-6	0.05	mg/kg			<0.05		
Fenamiphos	22224-92-6	0.05	mg/kg			<0.05		
Prothiofos	34643-46-4	0.05	mg/kg			<0.05		
Ethion	563-12-2	0.05	mg/kg			<0.05		
Carbophenothion	786-19-6	0.05	mg/kg			<0.05		
Azinphos Methyl	86-50-0	0.05	mg/kg			<0.05		
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 10 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TP5B_1.5	TP6B_0.4	TP7A_0.3	TP8_0.4	SB1_0.4
· · · · · ·	Cli	ent samplir	ng date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-007	ES1532447-008	ES1532447-009	ES1532447-010	ES1532447-011
			-	Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	vdrocarbons - Conti	inued						
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbon	IS	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarl	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ıs					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)	-							
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 11 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)	· · · · ·				TP6B_0.4	TP7A_0.3	TP8_0.4	SB1_0.4
	Cli	ent sampli	ng date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-007	ES1532447-008	ES1532447-009	ES1532447-010	ES1532447-011
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP068S: Organochlorine Pestic	ide Surrogate							
Dibromo-DDE	21655-73-2	0.05	%			75.7		
EP068T: Organophosphorus Pe	esticide Surrogate							
DEF	78-48-8	0.05	%			65.2		
EP075(SIM)S: Phenolic Compou	und Surrogates							
Phenol-d6	13127-88-3	0.5	%	97.4	94.0	104	104	101
2-Chlorophenol-D4	93951-73-6	0.5	%	93.7	90.2	98.5	100.0	97.1
2.4.6-Tribromophenol	118-79-6	0.5	%	81.6	81.1	99.7	101	87.4
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	96.4	93.2	103	105	100
Anthracene-d10	1719-06-8	0.5	%	96.2	95.2	104	106	102
4-Terphenyl-d14	1718-51-0	0.5	%	99.6	95.9	106	108	103
EP080S: TPH(V)/BTEX Surrogat	es							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	107	107	114	111	110
Toluene-D8	2037-26-5	0.2	%	107	105	115	111	112
4-Bromofluorobenzene	460-00-4	0.2	%	110	107	114	111	116

Page : 12 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB2_0.8	SB3_0.2	QC2	SB4_0.3	SB5_0.5
	Cl	ient samplir	ng date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-014	ES1532447-015	ES1532447-016	ES1532447-017	ES1532447-018
				Result	Result	Result	Result	Result
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	21.1	10.6	9.9	14.3	15.1
EA200: AS 4964 - 2004 Identification	n of Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg					No
Asbestos Type	1332-21-4	-						-
Sample weight (dry)		0.01	g					50.0
APPROVED IDENTIFIER:		-						C.OWLER
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	9	13	9	12	11
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	24	38	47	29	18
Copper	7440-50-8	5	mg/kg	12	26	31	32	34
Lead	7439-92-1	5	mg/kg	16	36	29	39	24
Nickel	7440-02-0	2	mg/kg	6	20	40	16	14
Zinc	7440-66-6	5	mg/kg	18	56	63	86	67
EG035T: Total Recoverable Mercur	rv bv FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticides	s (OC)							
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	<0.05		<0.05	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	<0.05		<0.05	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05		<0.05	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05		<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05		<0.05	
Total Chlordane (sum)		0.05	mg/kg	<0.05	<0.05		<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05		<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05		<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05		<0.05	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05		<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05		<0.05	
Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05		<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05		<0.05	
Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	<0.05		<0.05	

Page : 13 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB2_0.8	SB3_0.2	QC2	SB4_0.3	SB5_0.5
	Cli	ient samplii	ng date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-014	ES1532447-015	ES1532447-016	ES1532447-017	ES1532447-018
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05		<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05		<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2		<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2		<0.2	
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	<0.05		<0.05	
Sum of DDD + DDE + DDT		0.05	mg/kg	<0.05	<0.05		<0.05	
EP068B: Organophosphorus Pes	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05		<0.05	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05		<0.05	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2		<0.2	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05		<0.05	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2		<0.2	
Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05		<0.05	
Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05		<0.05	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	<0.05		<0.05	
Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2		<0.2	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05		<0.05	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05		<0.05	
Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05		<0.05	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05		<0.05	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05		<0.05	
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 14 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB2_0.8	SB3_0.2	QC2	SB4_0.3	SB5_0.5
,	Cli	ient samplir	ng date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-014	ES1532447-015	ES1532447-016	ES1532447-017	ES1532447-018
			-	Result	Result	Result	Result	Result
P075(SIM)B: Polynuclear Aromatic H	lydrocarbons - Cont	inued						
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbor	1S	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocar	bons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ıs					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 15 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB2_0.8	SB3_0.2	QC2	SB4_0.3	SB5_0.5
	Cli	ent sampli	ng date / time	[28-Sep-2015]	[28-Sep-2015]	[28-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-014	ES1532447-015	ES1532447-016	ES1532447-017	ES1532447-018
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP068S: Organochlorine Pestic	ide Surrogate							
Dibromo-DDE	21655-73-2	0.05	%	87.5	94.2		85.6	
EP068T: Organophosphorus Pe	sticide Surrogate							
DEF	78-48-8	0.05	%	70.8	77.9		64.6	
EP075(SIM)S: Phenolic Compou	und Surrogates							
Phenol-d6	13127-88-3	0.5	%	110	95.0	92.8	99.5	104
2-Chlorophenol-D4	93951-73-6	0.5	%	105	92.1	89.5	95.0	99.6
2.4.6-Tribromophenol	118-79-6	0.5	%	96.7	85.6	78.5	87.9	87.2
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	107	97.5	94.5	99.4	104
Anthracene-d10	1719-06-8	0.5	%	109	97.1	96.4	102	103
4-Terphenyl-d14	1718-51-0	0.5	%	112	99.0	97.6	104	107
EP080S: TPH(V)/BTEX Surrogat	es							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	110	116	118	108	119
Toluene-D8	2037-26-5	0.2	%	107	117	115	109	108
4-Bromofluorobenzene	460-00-4	0.2	%	112	121	117	114	114

Page : 16 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB6_1.2	SB7_1.0	SB8_0.8	SB9_0.3	SB10_0.9
	Cl	lient samplii	ng date / time	[28-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-020	ES1532447-021	ES1532447-022	ES1532447-023	ES1532447-025
				Result	Result	Result	Result	Result
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	18.7	17.5	12.8	13.4	16.2
EA200: AS 4964 - 2004 Identificatio	n of Asbestos in Soils	;						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No		No
Asbestos Type	1332-21-4	-		-	-	-		-
Sample weight (dry)		0.01	g	28.1	54.4	57.3		50.1
APPROVED IDENTIFIER:		-		S.SPOONER	S.SPOONER	S.SPOONER		S.SPOONER
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	9	7	11	6	18
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	18	20	24	14	10
Copper	7440-50-8	5	mg/kg	25	26	30	24	45
Lead	7439-92-1	5	mg/kg	12	31	106	26	15
Nickel	7440-02-0	2	mg/kg	11	12	23	11	4
Zinc	7440-66-6	5	mg/kg	43	42	304	67	26
EG035T: Total Recoverable Mercu	rv bv FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP068A: Organochlorine Pesticide	s (OC)							
alpha-BHC	319-84-6	0.05	mg/kg				<0.05	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg				<0.05	
beta-BHC	319-85-7	0.05	mg/kg				<0.05	
gamma-BHC	58-89-9	0.05	mg/kg				<0.05	
delta-BHC	319-86-8	0.05	mg/kg				<0.05	
Heptachlor	76-44-8	0.05	mg/kg				<0.05	
Aldrin	309-00-2	0.05	mg/kg				<0.05	
Heptachlor epoxide	1024-57-3	0.05	mg/kg				<0.05	
Total Chlordane (sum)		0.05	mg/kg				<0.05	
trans-Chlordane	5103-74-2	0.05	mg/kg				<0.05	
alpha-Endosulfan	959-98-8	0.05	mg/kg				<0.05	
cis-Chlordane	5103-71-9	0.05	mg/kg				<0.05	
Dieldrin	60-57-1	0.05	mg/kg				<0.05	
4.4`-DDE	72-55-9	0.05	mg/kg				<0.05	
Endrin	72-20-8	0.05	mg/kg				<0.05	
beta-Endosulfan	33213-65-9	0.05	mg/kg				<0.05	
Endosulfan (sum)	115-29-7	0.05	mg/kg				<0.05	

Page : 17 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SB6_1.2	SB7_1.0	SB8_0.8	SB9_0.3	SB10_0.9
. ,	Cl	ient sampliı	ng date / time	[28-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-020	ES1532447-021	ES1532447-022	ES1532447-023	ES1532447-025
				Result	Result	Result	Result	Result
EP068A: Organochlorine Pesticio	des (OC) - Continued							
4.4`-DDD	72-54-8	0.05	mg/kg				<0.05	
Endrin aldehyde	7421-93-4	0.05	mg/kg				<0.05	
Endosulfan sulfate	1031-07-8	0.05	mg/kg				<0.05	
4.4`-DDT	50-29-3	0.2	mg/kg				<0.2	
Endrin ketone	53494-70-5	0.05	mg/kg				<0.05	
Methoxychlor	72-43-5	0.2	mg/kg				<0.2	
Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg				<0.05	
Sum of DDD + DDE + DDT		0.05	mg/kg				<0.05	
EP068B: Organophosphorus Pes	sticides (OP)							
Dichlorvos	62-73-7	0.05	mg/kg				<0.05	
Demeton-S-methyl	919-86-8	0.05	mg/kg				<0.05	
Monocrotophos	6923-22-4	0.2	mg/kg				<0.2	
Dimethoate	60-51-5	0.05	mg/kg				<0.05	
Diazinon	333-41-5	0.05	mg/kg				<0.05	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg				<0.05	
Parathion-methyl	298-00-0	0.2	mg/kg				<0.2	
Malathion	121-75-5	0.05	mg/kg				<0.05	
Fenthion	55-38-9	0.05	mg/kg				<0.05	
Chlorpyrifos	2921-88-2	0.05	mg/kg				<0.05	
Parathion	56-38-2	0.2	mg/kg				<0.2	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg				<0.05	
Chlorfenvinphos	470-90-6	0.05	mg/kg				<0.05	
Bromophos-ethyl	4824-78-6	0.05	mg/kg				<0.05	
Fenamiphos	22224-92-6	0.05	mg/kg				<0.05	
Prothiofos	34643-46-4	0.05	mg/kg				<0.05	
Ethion	563-12-2	0.05	mg/kg				<0.05	
Carbophenothion	786-19-6	0.05	mg/kg				<0.05	
Azinphos Methyl	86-50-0	0.05	mg/kg				<0.05	
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 18 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	nt sample ID	SB6_1.2	SB7_1.0	SB8_0.8	SB9_0.3	SB10_0.9
	Cli	ient samplir	ng date / time	[28-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-020	ES1532447-021	ES1532447-022	ES1532447-023	ES1532447-025
Jonipouna	CAS Number		-	Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	ludrocarbone Cont	inuad		1 COUR	Robult	Result	Roour	rtoour
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	< 0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	< 0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	< 0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbor		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocar	hons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	IS					
C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 19 of 20 Work Order : ES1532447 Client : SULLIVAN ENVIRONMENTAL SCIENCES Project : SES_424

Analytical Results

ub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	SB6_1.2	SB7_1.0	SB8_0.8	SB9_0.3	SB10_0.9
	Cli	ient sampli	ng date / time	[28-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]	[29-Sep-2015]
Compound	CAS Number	LOR	Unit	ES1532447-020	ES1532447-021	ES1532447-022	ES1532447-023	ES1532447-025
				Result	Result	Result	Result	Result
EP080: BTEXN - Continued								
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP068S: Organochlorine Pesticide	Surrogate							
Dibromo-DDE	21655-73-2	0.05	%				95.9	
EP068T: Organophosphorus Pesti	cide Surrogate							
DEF	78-48-8	0.05	%				75.4	
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.5	%	102	109	107	108	104
2-Chlorophenol-D4	93951-73-6	0.5	%	99.0	104	101	103	99.7
2.4.6-Tribromophenol	118-79-6	0.5	%	91.5	89.3	96.0	96.9	93.2
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	103	108	104	106	102
Anthracene-d10	1719-06-8	0.5	%	103	110	106	111	105
4-Terphenyl-d14	1718-51-0	0.5	%	107	114	107	113	107
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	109	110	112	112	114
Toluene-D8	2037-26-5	0.2	%	105	112	108	106	107
4-Bromofluorobenzene	460-00-4	0.2	%	109	116	110	111	109

Analytical Results

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos	a in Soils	
EA200: Description	TP1_0.5 - [28-Sep-2015]	Mid brown clay soil with grey rocks.
EA200: Description	TP2_1.4 - [28-Sep-2015]	Mid brown clay soil with grey rocks.
EA200: Description	TP3_0.4 - [28-Sep-2015]	Mid brown clay soil.
EA200: Description	TP5B_1.5 - [28-Sep-2015]	Mid brown clay soil with some vegetation.
EA200: Description	TP6B_0.4 - [28-Sep-2015]	Mid brown clay soil with red rocks and one friable asbestos fibre bundle approx 2 x 1 x 0.5 mm.
EA200: Description	TP8_0.4 - [28-Sep-2015]	Mid brown clay soil with red rocks.
EA200: Description	SB1_0.4 - [28-Sep-2015]	Mid brown clay soil with red rocks.
EA200: Description	SB5_0.5 - [29-Sep-2015]	Mid brown clay soil with red rocks.
EA200: Description	SB6_1.2 - [28-Sep-2015]	Mid orange - brown clay soil with grey rocks.
EA200: Description	SB7_1.0 - [29-Sep-2015]	Mid brown clay soil with grey rocks.
EA200: Description	SB8_0.8 - [29-Sep-2015]	Mid brown clay soil with grey rocks.
EA200: Description	SB10_0.9 - [29-Sep-2015]	Mid red - grey clay soil with grey rocks.

QUALITY CONTROL REPORT

Work Order	: ES1532447	Page	: 1 of 12
Client	: SULLIVAN ENVIRONMENTAL SCIENCES	Laboratory	: Environmental Division Sydney
Contact	: ADAM SULLIVAN	Contact	:
Address	: PO Box 5248	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	TURRAMURRA NSW 2074		
E-mail	: adam@sullivan-es.com.au	E-mail	:
Telephone	:	Telephone	: +61-2-8784 8555
Facsimile	:	Facsimile	: +61-2-8784 8500
Project	: SES_424	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:	Date Samples Received	: 29-Sep-2015
C-O-C number	:	Date Analysis Commenced	: 30-Sep-2015
Sampler	:	Issue Date	: 07-Oct-2015
Site	:	No. of samples received	: 25
Quote number	:	No. of samples analysed	: 20

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

	Accredited for	Signatories	Position	Accreditation Category
	compliance with ISO/IEC 17025.	Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
		Edwandy Fadjar	Organic Coordinator	Sydney Inorganics
í		Pabi Subba	Senior Organic Chemist	Sydney Inorganics
				Sydney Organics
		Shaun Spooner	Asbestos Identifier	Newcastle - Asbestos
		Shobhna Chandra	Metals Coordinator	Sydney Inorganics

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%		
EA055: Moisture Co	ntent (QC Lot: 232242)										
ES1532288-003	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	21.6	20.6	5.13	0% - 20%		
ES1532447-001	TP1_0.5	EA055-103: Moisture Content (dried @ 103°C)		1	%	10.8	9.9	8.99	0% - 50%		
EA055: Moisture Co	ntent (QC Lot: 232243)										
ES1532447-011	SB1_0.4	EA055-103: Moisture Content (dried @ 103°C)		1	%	14.0	13.4	4.07	0% - 50%		
ES1532569-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	15.0	14.4	4.40	0% - 50%		
EG005T: Total Metal	Is by ICP-AES (QC Lot	: 229653)									
ES1532276-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	28	28	0.00	0% - 50%		
		EG005T: Nickel	7440-02-0	2	mg/kg	24	24	0.00	0% - 50%		
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	22	22	0.00	No Limit		
		EG005T: Lead	7439-92-1	5	mg/kg	19	18	0.00	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	90	79	13.4	0% - 50%		
ES1532447-010	TP8_0.4	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	26	23	14.0	0% - 50%		
		EG005T: Nickel	7440-02-0	2	mg/kg	14	12	0.00	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	10	9	0.00	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	22	26	12.4	No Limit		
		EG005T: Lead	7439-92-1	5	mg/kg	36	59	48.3	0% - 50%		
		EG005T: Zinc	7440-66-6	5	mg/kg	62	92	38.7	0% - 50%		
G005T: Total Meta	Is by ICP-AES (QC Lot	: 229655)									
ES1532447-023	SB9_0.3	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	14	15	9.71	No Limit		
		EG005T: Nickel	7440-02-0	2	mg/kg	11	12	0.00	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	6	7	0.00	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	24	25	4.38	No Limit		
		EG005T: Lead	7439-92-1	5	mg/kg	26	24	9.79	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	67	66	2.61	0% - 50%		
ES1532501-011	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit		
		EG005T: Chromium	7440-47-3	2	mg/kg	24	24	0.00	0% - 50%		
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit		
		EG005T: Arsenic	7440-38-2	5	mg/kg	9	9	0.00	No Limit		
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit		
		EG005T: Lead	7439-92-1	5	mg/kg	31	29	6.81	No Limit		
		EG005T: Zinc	7440-66-6	5	mg/kg	10	10	0.00	No Limit		

Page	: 4 of 12
Work Order	: ES1532447
Client	: SULLIVAN ENVIRONMENTAL SCIENCES
Project	: SES_424

Sub-Matrix: SOIL			[Laboratory	Duplicate (DUP) Report	ł	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG035T: Total Reco	overable Mercury by FIN								
ES1532276-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1532447-010	TP8_0.4	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EG035T: Total Reco	overable Mercury by FIN								
ES1532447-023	SB9 0.3	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1532501-011	_ Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP068A: Organochl	orine Pesticides (OC) (
ES1532447-005	TP4 1.0	EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Endrin ketone	53494-70-5	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP068B: Organopho	osphorus Pesticides (OF	P) (QC Lot: 229186)							
ES1532447-005	TP4_1.0	EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
	-	EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit

Page	5 of 12
Work Order	: ES1532447
Client	: SULLIVAN ENVIRONMENTAL SCIENCES
Project	: SES_424

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP068B: Organopho	osphorus Pesticides (Ol	P) (QC Lot: 229186) - continued							
ES1532447-005	TP4_1.0	EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
EP075(SIM)B: Polyn	uclear Aromatic Hydrod	carbons (QC Lot: 229184)							
ES1532447-014	SB2_0.8	EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
ES1532447-005	TP4_1.0	EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			205-82-3						
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EP075(SIM)B: Polyr	nuclear Aromatic Hydro	carbons (QC Lot: 229184) - continued										
ES1532447-005	TP4_1.0	EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		hydrocarbons										
EP080/071: Total Pe	etroleum Hydrocarbons	(QC Lot: 229185)										
ES1532447-014	SB2_0.8	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
ES1532447-005	TP4_1.0	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit			
EP080/071: Total Pe	etroleum Hydrocarbons	(QC Lot: 229189)										
ES1532447-001	TP1_0.5	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit			
ES1532447-014	SB2_0.8	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit			
EP080/071: Total Re	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 229185)										
ES1532447-014	SB2_0.8	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.00	No Limit			
ES1532447-005	TP4_1.0	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit			
		EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	<50	0.00	No Limit			
EP080/071: Total Re	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 229189)										
ES1532447-001	TP1_0.5	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit			
ES1532447-014	SB2_0.8	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit			
EP080: BTEXN (QC	Lot: 229189)											
ES1532447-001	TP1_0.5	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit			
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
			106-42-3									
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit			
ES1532447-014	SB2_0.8	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit			
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit			

Page	: 7 of 12
Work Order	: ES1532447
Client	: SULLIVAN ENVIRONMENTAL SCIENCES
Project	: SES_424

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC	Lot: 229189) - continue	d							
ES1532447-014	SB2_0.8	EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Nethod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
G005T: Total Metals by ICP-AES (QCLot:	229653)								
G005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	111	92	130	
G005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	99.3	87	121	
G005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	113	80	136	
G005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	104	93	127	
G005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	101	86	124	
G005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	107	93	131	
G005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	106	81	133	
G005T: Total Metals by ICP-AES (QCLot:	229655)								
G005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	103	92	130	
G005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	101	87	121	
G005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	115	80	136	
G005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	114	93	127	
G005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	103	86	124	
G005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	108	93	131	
G005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	108	81	133	
G035T: Total Recoverable Mercury by Fil	MS (QCLot: 229654)								
G035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	86.5	70	105	
G035T: Total Recoverable Mercury by Fil	MS (QCLot: 229656)								
G035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	78.0	70	105	
P068A: Organochlorine Pesticides (OC)	(QCL at: 229186)								
P068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	89.1	76	120	
P068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	85.8	69	117	
P068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	83.3	67	127	
P068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	82.2	68	118	
P068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	87.8	71	113	
P068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	85.2	69	119	
P068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	87.4	69	119	
P068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	85.7	76	120	
P068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	86.9	67	121	
P068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	85.3	65	113	
P068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	85.6	66	118	
P068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	101	60	124	
P068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	80.4	67	123	
P068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	94.9	57	115	

Page	: 9 of 12
Work Order	: ES1532447
Client	: SULLIVAN ENVIRONMENTAL SCIENCES
Project	: SES_424

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP068A: Organochlorine Pesticides (OC) (QCLot: 2	29186) - continued								
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	106	65	123	
EP068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	84.3	71	115	
EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	82.2	68	116	
EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	86.6	68	116	
EP068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	90.2	66	122	
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	85.0	65	129	
EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	86.0	68	120	
EP068B: Organophosphorus Pesticides (OP) (QCLo	ot: 229186)								
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	82.6	42	126	
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	85.4	68	116	
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	99.3	67	123	
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	85.6	70	118	
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	85.4	68	114	
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	85.9	55	119	
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	94.9	64	128	
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	85.9	73	117	
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	91.1	56	126	
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	80.7	64	124	
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	84.3	70	118	
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	82.2	64	120	
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	83.8	71	115	
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	81.9	70	120	
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	90.4	54	122	
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	76.9	68	122	
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	79.3	69	123	
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	83.9	69	115	
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	87.2	68	116	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 229184)								
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	93.1	79	123	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	95.1	77	123	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	101	79	123	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	98.8	73	121	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	95.6	76	122	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	103	70	118	
	205-82-3								
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	76.5	72	114	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	99.3	77	123	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	101	81	123	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	82.5	72	113	

Page	: 10 of 12
Work Order	: ES1532447
Client	: SULLIVAN ENVIRONMENTAL SCIENCES
Project	: SES_424

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP075(SIM)B: Polynuclear Aromatic Hydroca	bons (QCLot: 229184) - cont	inued							
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	97.4	79	123	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	96.5	77	123	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	78.9	71	113	
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	100	80	124	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	100	79	123	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	98.0	79	125	
EP080/071: Total Petroleum Hydrocarbons(C	CLot: 229185)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	200 mg/kg	104	71	131	
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	120	74	138	
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	106	64	128	
EP080/071: Total Petroleum Hydrocarbons(C	CLot: 229189)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	99.2	68	128	
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 Fractions (QCLo	ot: 229185)							
EP071: >C10 - C16 Fraction	>C10_C16	50	mg/kg	<50	250 mg/kg	104	70	130	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	110	74	138	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	150 mg/kg	97.2	63	131	
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 Fractions (QCLo	ot: 229189)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	97.5	68	128	
EP080: BTEXN (QCLot: 229189)									
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	90.0	62	116	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	95.4	58	118	
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	96.2	60	120	
	106-42-3								
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	98.0	62	138	
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	101	60	120	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	96.7	62	128	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery Limits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG005T: Total Met	als by ICP-AES (QCLot: 229653)							
ES1532288-005	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	116	70	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	108	70	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	109	70	130	

Page	: 11 of 12
Work Order	: ES1532447
Client	: SULLIVAN ENVIRONMENTAL SCIENCES
Project	: SES_424

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005T: Total Met	als by ICP-AES (QCLot: 229653) - continued						
ES1532288-005	Anonymous	EG005T: Copper	7440-50-8	250 mg/kg	110	70	130
		EG005T: Lead	7439-92-1	250 mg/kg	109	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	106	70	130
		EG005T: Zinc	7440-66-6	250 mg/kg	105	70	130
G005T: Total Met	als by ICP-AES (QCLot: 229655)						1
ES1532447-023	SB9 0.3	EG005T: Arsenic	7440-38-2	50 mg/kg	113	70	130
	000_000	EG005T: Cadmium	7440-43-9	50 mg/kg	105	70	130
		EG005T: Chromium	7440-47-3	50 mg/kg	108	70	130
		EG005T: Copper	7440-50-8	250 mg/kg	110	70	130
		EG005T: Lead	7439-92-1	250 mg/kg	107	70	130
		EG005T: Nickel	7440-02-0	50 mg/kg	106	70	130
		EG005T: Zinc	7440-66-6	250 mg/kg	105	70	130
G035T: Total Re	coverable Mercury by FIMS (QCLot: 229654)						1
ES1532276-001	Anonymous	EQUICT Manual	7439-97-6	5 mg/kg	85.6	70	130
		EG035T: Mercury	7439-97-0	5 mg/kg	85.0	70	130
	coverable Mercury by FIMS (QCLot: 229656)						
ES1532447-023	SB9_0.3	EG035T: Mercury	7439-97-6	5 mg/kg	89.2	70	130
EP068A: Organocl	nlorine Pesticides (OC) (QCLot: 229186)						
ES1532447-005	TP4_1.0	EP068: 4.4`-DDT	50-29-3	2 mg/kg	96.9	70	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	86.6	70	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	93.4	70	130
		EP068: Endrin	72-20-8	2 mg/kg	90.4	70	130
		EP068: gamma-BHC	58-89-9	0.5 mg/kg	82.5	70	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	100	70	130
EP068B: Organopl	nosphorus Pesticides (OP) (QCLot: 229186)						
ES1532447-005	TP4 1.0	EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	97.3	70	130
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	98.7	70	130
		EP068: Diazinon	333-41-5	0.5 mg/kg	97.8	70	130
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	95.6	70	130
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	92.2	70	130
P075(SIM)B· Poly	nuclear Aromatic Hydrocarbons (QCLot: 22						
ES1532447-005	TP4_1.0	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	87.8	70	130
201002771-000		EP075(SIM): Acenaphinene EP075(SIM): Pyrene	129-00-0	10 mg/kg	99.4	70	130
DASA/074. Total P	latroloum Hudrocorbone (OCL et: 220405)		120 00 0	is ingrig	T.00	, ,	100
	etroleum Hydrocarbons (QCLot: 229185)			500 "	00 i	70	
ES1532447-005	TP4_1.0	EP071: C10 - C14 Fraction		523 mg/kg	99.4	73	137
		EP071: C15 - C28 Fraction		2319 mg/kg	103	53	131
		EP071: C29 - C36 Fraction		1714 mg/kg	122	52	132

Page	: 12 of 12
Work Order	: ES1532447
Client	: SULLIVAN ENVIRONMENTAL SCIENCES
Project	: SES_424

Sub-Matrix: SOIL				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	Limits (%)		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 229189)								
ES1532447-001	TP1_0.5	EP080: C6 - C9 Fraction		32.5 mg/kg	107	70	130		
EP080/071: Total R	Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 229185)							
ES1532447-005 TP4_1.0	TP4_1.0	EP071: >C10 - C16 Fraction	>C10_C16	860 mg/kg	92.5	73	137		
		EP071: >C16 - C34 Fraction		3223 mg/kg	117	53	131		
		EP071: >C34 - C40 Fraction		1058 mg/kg	111	52	132		
EP080/071: Total R	Recoverable Hydrocarbons - NEPM 2013 Fractions	(QCLot: 229189)							
ES1532447-001	TP1_0.5	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	103	70	130		
EP080: BTEXN (Q	CLot: 229189)								
ES1532447-001	TP1_0.5	EP080: Benzene	71-43-2	2.5 mg/kg	82.1	70	130		
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	94.6	70	130		
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	94.1	70	130		
			106-42-3						
		EP080: Naphthalene	91-20-3	2.5 mg/kg	91.4	70	130		
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	98.7	70	130		
		EP080: Toluene	108-88-3	2.5 mg/kg	89.1	70	130		

QA/QC Compliance Assessment for DQO Reporting

Work Order	ES1532447	Page	: 1 of 6
Client	SULLIVAN ENVIRONMENTAL SCIENCES	Laboratory	: Environmental Division Sydney
Contact	: ADAM SULLIVAN	Telephone	: +61-2-8784 8555
Project	: SES_424	Date Samples Received	: 29-Sep-2015
ite	:	Issue Date	: 07-Oct-2015
ampler	:	No. of samples received	: 25
Order number	:	No. of samples analysed	: 20

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	e breach ; ✓ = With	in holding time
Method		Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA05	5-103)							
TP1_0.5,	QC1,	28-Sep-2015				02-Oct-2015	12-Oct-2015	 ✓
TP2_1.4,	TP3_0.4,							
TP4_1.0,	TP5B_1.5,							
TP6B_0.4,	TP7A_0.3,							
TP8_0.4,	SB1_0.4,							
SB2_0.8,	SB3_0.2,							
QC2,	SB6_1.2							
Soil Glass Jar - Unpreserved (EA05	5-103)							
SB9_0.3		29-Sep-2015				01-Oct-2015	13-Oct-2015	 ✓
Soil Glass Jar - Unpreserved (EA05	5-103)							
SB4_0.3,	SB5_0.5,	29-Sep-2015				02-Oct-2015	13-Oct-2015	 ✓
SB7_1.0,	SB8_0.8,							
SB10_0.9								
EA200: AS 4964 - 2004 Identificatio	n of Asbestos in Soils							
Snap Lock Bag - Separate bag recei	ived (EA200)							
TP1_0.5,	TP2_1.4,	28-Sep-2015				06-Oct-2015	26-Mar-2016	 ✓
TP3_0.4,	TP5B_1.5,							
TP6B_0.4,	TP8_0.4,							
SB1_0.4								
Snap Lock Bag - Separate bag recei	ived (EA200)							
SB5_0.5,	SB7_1.0,	29-Sep-2015				06-Oct-2015	27-Mar-2016	 ✓
SB8_0.8,	SB10_0.9							
Snap Lock Bag - Subsampled by AL	.S (EA200)							
SB6_1.2		28-Sep-2015				06-Oct-2015	26-Mar-2016	✓

Page	: 3 of 6
Work Order	: ES1532447
Client	: SULLIVAN ENVIRONMENTAL SCIENCES
Project	: SES_424

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
TP1_0.5,	QC1,	28-Sep-2015	30-Sep-2015	26-Mar-2016	1	01-Oct-2015	26-Mar-2016	 ✓
TP2_1.4,	TP3_0.4,							
TP4_1.0,	TP5B_1.5,							
TP6B_0.4,	TP7A_0.3,							
TP8_0.4,	SB1_0.4,							
SB2_0.8,	SB3_0.2,							
QC2,	SB6_1.2							
Soil Glass Jar - Unpreserved (EG005T)								
SB4_0.3,	SB5_0.5,	29-Sep-2015	30-Sep-2015	27-Mar-2016	1	01-Oct-2015	27-Mar-2016	 ✓
SB7_1.0,	SB8_0.8,							
SB9_0.3,	SB10_0.9							
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)								
TP1_0.5,	QC1,	28-Sep-2015	30-Sep-2015	26-Oct-2015	1	06-Oct-2015	26-Oct-2015	✓
TP2_1.4,	TP3_0.4,							
TP4_1.0,	TP5B_1.5,							
TP6B_0.4,	TP7A_0.3,							
TP8_0.4,	SB1_0.4,							
SB2_0.8,	SB3_0.2,							
QC2,	SB6_1.2							
Soil Glass Jar - Unpreserved (EG035T)								
SB8_0.8,	SB9_0.3,	29-Sep-2015	30-Sep-2015	27-Oct-2015	1	01-Oct-2015	27-Oct-2015	✓
SB10_0.9								
Soil Glass Jar - Unpreserved (EG035T)								
SB4_0.3,	SB5_0.5,	29-Sep-2015	30-Sep-2015	27-Oct-2015	~	06-Oct-2015	27-Oct-2015	✓
SB7_1.0								
EP068A: Organochlorine Pesticides (OC)								
Soil Glass Jar - Unpreserved (EP068)								
TP4_1.0,	TP7A_0.3,	28-Sep-2015	01-Oct-2015	12-Oct-2015	~	01-Oct-2015	10-Nov-2015	 ✓
SB2_0.8,	SB3_0.2							
Soil Glass Jar - Unpreserved (EP068)				10.0.1.0015			40 No. 0045	
SB4_0.3,	SB9_0.3	29-Sep-2015	01-Oct-2015	13-Oct-2015	~	01-Oct-2015	10-Nov-2015	✓

Page	: 4 of 6
Work Order	: ES1532447
Client	: SULLIVAN ENVIRONMENTAL SCIENCES
Project	: SES_424

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = With	n holding time
Method		Sample Date	Ex	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydroca	irbons							
Soil Glass Jar - Unpreserved (EP071)								
TP1_0.5,	QC1,	28-Sep-2015	01-Oct-2015	12-Oct-2015	1	01-Oct-2015	10-Nov-2015	 ✓
TP2_1.4,	TP3_0.4,							
TP4_1.0,	TP5B_1.5,							
TP6B_0.4,	TP7A_0.3,							
TP8_0.4,	SB1_0.4,							
SB2_0.8,	SB3_0.2,							
QC2,	SB6_1.2							
Soil Glass Jar - Unpreserved (EP071)								
SB4_0.3,	SB5_0.5,	29-Sep-2015	01-Oct-2015	13-Oct-2015	1	01-Oct-2015	10-Nov-2015	 ✓
SB7_1.0,	SB8_0.8,							
SB9_0.3,	SB10_0.9							
EP075(SIM)T: PAH Surrogates								
Soil Glass Jar - Unpreserved (EP075(SIM))							
TP1_0.5,	QC1,	28-Sep-2015	01-Oct-2015	12-Oct-2015	1	01-Oct-2015	10-Nov-2015	✓
TP2_1.4,	TP3_0.4,							
TP4_1.0,	TP5B_1.5,							
TP6B_0.4,	TP7A_0.3,							
TP8_0.4,	SB1_0.4,							
SB2_0.8,	SB3_0.2,							
QC2,	SB6_1.2							
Soil Glass Jar - Unpreserved (EP075(SIM))							
SB4_0.3,	SB5_0.5,	29-Sep-2015	01-Oct-2015	13-Oct-2015	1	01-Oct-2015	10-Nov-2015	 ✓
SB7_1.0,	SB8_0.8,							
SB9_0.3,	SB10_0.9							
EP080S: TPH(V)/BTEX Surrogates								
Soil Glass Jar - Unpreserved (EP080)								
TP1_0.5,	QC1,	28-Sep-2015	30-Sep-2015	12-Oct-2015	1	02-Oct-2015	12-Oct-2015	✓
TP2_1.4,	TP3_0.4,							
TP4_1.0,	TP5B_1.5,							
TP6B_0.4,	TP7A_0.3,							
TP8_0.4,	SB1_0.4,							
SB2_0.8,	SB3_0.2,							
QC2,	SB6_1.2							
Soil Glass Jar - Unpreserved (EP080)								
SB4_0.3,	SB5_0.5,	29-Sep-2015	30-Sep-2015	13-Oct-2015	1	02-Oct-2015	13-Oct-2015	✓
SB7_1.0,	SB8_0.8,							
SB9 0.3,	SB10 0.9							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: 🗴 = Quality Co	ntrol frequency	not within specification ; 🗸 = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Noisture Content	EA055-103	2	20	10.00	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (SIM)	EP075(SIM)	2	20	10.00	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	6	16.67	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
RH - Semivolatile Fraction	EP071	2	20	10.00	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
RH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
aboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	20	5.00	5.00	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	6	16.67	5.00	- -	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
RH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
RH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
lethod Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	20	5.00	5.00	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Pesticides by GCMS	EP068	1	6	16.67	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	1	20	5.00	5.00	✓ ✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
RH - Semivolatile Fraction	EP071	1	20	5.00	5.00	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
RH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓ ✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
latrix Spikes (MS)						-	
AH/Phenols (SIM)	EP075(SIM)	1	20	5.00	5.00	1	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
esticides by GCMS	EP068	1	6	16.67	5.00		NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Mercury by FIMS	EG035T	1	20	5.00	5.00		NEPM 2013 Schedule B(3) and ALS QCS3 requirement
otal Metals by ICP-AES	EG005T	1	20	5.00	5.00		NEPM 2013 Schedule B(3) and ALS QCS3 requirement
RH - Semivolatile Fraction	EP071	1	20	5.00	5.00		NEPM 2013 Schedule B(3) and ALS QCS3 requirement
RH Volatiles/BTEX	EP080	1	20	5.00	5.00		NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	In-house. A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 - 2004 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Pesticides by GCMS	EP068	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TRH - Semivolatile Fraction	EP071	SOIL	(USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	(USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	(USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Preparation Methods	Method	Matrix	Method Descriptions
Methanolic Extraction of Soils for Purge and Trap	* ORG16	SOIL	(USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES1532447			
Client	SULLIVAN ENVIRONMENTAL	Laboratory	: Environmental Division Sydney	
Contact	: ADAM SULLIVAN	Contact	:	
Address	: PO Box 5248	Address	277-289 Woodpark Road Smithfield	
	TURRAMURRA NSW 2074		NSW Australia 2164	
E-mail	: adam@sullivan-es.com.au	E-mail	:	
Telephone	:	Telephone	: +61-2-8784 8555	
Facsimile	:	Facsimile	: +61-2-8784 8500	
Project	: SES_424	Page	: 1 of 3	
Order number	:	Quote number	: ES2015SULENV0034 (SYBQ-207-15)	
C-O-C number	:	QC Level	NEPM 2013 Schedule B(3) and ALS QCS3 requirement	3
Site	:			
Sampler	:			
Dates				
Date Samples Receiv	ved : 29-Sep-2015 3:00 PM	Issue Date	: 29-Sep-2015	
Client Requested Du	e : 06-Oct-2015	Scheduled Reporti	ng Date 06-Oct-2015	
Date				
Delivery Detai	ils			
Mode of Delivery	: Undefined	Security Seal	: Not Available	
No. of coolers/boxes	: 1	Temperature	:	
Receipt Detail	:	No. of samples rec	ceived / analysed : 25 / 20	

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Asbestos analysis will be conducted by ALS Newcastle.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.
- EA200: As only one sample container was submitted for multiple tests, SAMPLE #20, sub sampling was conducted prior to Asbestos analysis. As this has the potential to understate detection, results should be scrutinised accordingly.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
Asbestos Identification in Soils : EA200		
SB6_1.2	- Snap Lock Bag - Subsampled by	- Snap Lock Bag - ACM/Asbestos Grab
	ALS	Sample bag

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: SOIL Laboratory sample ID	Client sampling date / time	Client sample ID	On Hold) SOIL Vo analysis requested	SOIL - EA055-103 Moisture Content	SOIL - EA200 Asbestos Identification in Soils -	SOIL - S-12 OC/OP Pesticides	SOIL - S-26 8 metals/TRH/BTEXN/PAH
ES1532447-001	[28-Sep-2015]	TP1_0.5	02	√	✓		✓
ES1532447-002	[28-Sep-2015]	QC1		1			✓
ES1532447-003	[28-Sep-2015]	TP2_1.4		✓	✓		1
ES1532447-004	[28-Sep-2015]	TP3_0.4		1	✓		✓
ES1532447-005	[28-Sep-2015]	TP4_1.0		1		1	1
ES1532447-006	[28-Sep-2015]	TP5A_0.8	 ✓ 				
ES1532447-007	[28-Sep-2015]	TP5B_1.5		1	1		1
ES1532447-008	[28-Sep-2015]	TP6B_0.4		✓	1		✓
ES1532447-009	[28-Sep-2015]	TP7A_0.3		✓		1	✓
ES1532447-010	[28-Sep-2015]	TP8_0.4		✓	✓		✓
ES1532447-011	[28-Sep-2015]	SB1_0.4		✓	✓		✓
ES1532447-012	[28-Sep-2015]	SB1_1.5	 ✓ 				
ES1532447-013	[28-Sep-2015]	SB2_0.3	 ✓ 				
ES1532447-014	[28-Sep-2015]	SB2_0.8		✓		✓	✓
ES1532447-015	[28-Sep-2015]	SB3_0.2		✓		✓	✓
ES1532447-016	[28-Sep-2015]	QC2		✓			✓
ES1532447-017	[29-Sep-2015]	SB4_0.3		✓		1	✓
ES1532447-018	[29-Sep-2015]	SB5_0.5		✓	1		✓
ES1532447-019	[28-Sep-2015]	SB6_0.5	 ✓ 				
ES1532447-020	[28-Sep-2015]	SB6_1.2		✓	✓		✓
ES1532447-021	[29-Sep-2015]	SB7_1.0		✓	1		✓
ES1532447-022	[29-Sep-2015]	SB8_0.8		✓	✓		✓
ES1532447-023	[29-Sep-2015]	SB9_0.3		✓		✓	✓
ES1532447-024	[29-Sep-2015]	SB9_1.0	✓				
ES1532447-025	[29-Sep-2015]	SB10_0.9		✓	✓		✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ADAM SULLIVAN

- *AU Certificate of Analysis NATA (COA)
- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)
- *AU QC Report DEFAULT (Anon QC Rep) NATA (QC)
- A4 AU Sample Receipt Notification Environmental HT (SRN)
- A4 AU Tax Invoice (INV)
- Chain of Custody (CoC) (COC)
- EDI Format XTab (XTAB)

Email Email Email Email Email Email Email adam@sullivan-es.com.au adam@sullivan-es.com.au adam@sullivan-es.com.au adam@sullivan-es.com.au adam@sullivan-es.com.au adam@sullivan-es.com.au

THIS COLUMN FOR LAB USE ONLY	FROM: SULLIVAN Sullivan Environmental Sciences	VAN) ental Scienc	DATE:	29/9/15	TO	TO: ALS Environmenta	mental			Container	Container Size, Type, Preservative and Analysis	servative	
			3	1 7					-	Cont	Container Identification	ion	
Job Code:	PO Box 5248						Size						
	Turramurra NSW 2074	074	10.10				Type*	tive					
Dite Date:	Ph: 0400 500 264		Email: ad	Email: adam@sullivan-es.com.au	im.au		Code						
	Project Manager: A. Sullivar	Sullivan	Signature(s): Checked:	: a. Lube			Analytes	stute state	DI SO	(2
Custody seal intact?	Released by: U.M.	Jul-			Received by:	y: Waridu	1	~ 8/ 919/1		10/	p)0		
	Date: $2q/q/15$ Time:	Time:		Date:	Date: 290918	IS Time: 1500		HAO		00	н		
Lab identification	Date Time	Matrix	Sample Number	umber		Comments	Total no		Tick required analytes				1
	28/9	Solid	TPI-	5.0			2		X				
		-	9(1				•	X					
		-	TP2-	-1.4			2	×	×				
		-	TP3-	4.0.4			2	X	×				
	-	-	- tot	0.1-			2	×		X			
			TPSA	8.0~			2				X		
			TP 53.	-1.5			Ч	×	×				
			TP68	4.0-			Z	X	X				
			4774	2.0-			2	×		×			
		1		-0.4			2	×	×				
	\rightarrow	A	561-1	0.4			K	X	×				
	1		5B1-	-1.5			-				×		
Remarks:						Ĥ	TOT 11 22	01	2	2	2		
	* Container Type and Preservative Codes: P = Neutral Plastic, N = Nitric Acid Pres Bott le; VC = Hydrochloric Acid Preserved Vial; VS = Sulfuric Acid Preserved Vial; B	d Preservativ Iloric Acid Pre	e Codes: P =	 Neutral Plastic; N = VS = Sulfuric Acid P 	- Nitric Acid F reserved Via	* Container Type and Preservative Codes: P = Neutral Plastic; N = Nitric Acid Preserved; C = Sodium Hydroxide Preserved; J = Solvent Washed Acid Rinsed Jar; S = Solvent Washed Acid Rinsed Glass Bottle; VC = Hydrochloric Acid Preserved Vial; VS = Sulfuric Acid Preserved Vial; BS = Sulfuric Acid Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile E	oxide Preservied Glass Bott	ed; J = Solver tle; Z = Zinc A	nt Washed Ac	id Rinsed Jar ved Bottle; E	; S = Solvent W = EDTA Preser	eved: C = Sodium Hydroxide Preserved; J = Solvent Washed Acid Rinsed Jar; S = Solvent Washed Acid Rinsed Glass S = Sulfuric Acid Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles: ST = Sterlie Bottle	ss Bottle
Courier Job No:	Specify Turnaround Time:	1 Time:							NOTE: SAM	PLES MAY C	NOTE: SAMPLES MAY CONTAIN DANGEROUS	SEROUS	
									AND	HAZARDOLE	AND HAZARDOUS SUBSTANCES	S S S S S S S S S S S S S S S S S S S	

FOM: SULLIVAN DATE: 2-9/9/15 Job Code: ROM: SULLIVAN DATE: 2-9/9/15 Job Code: PO Box 5248 Turramural Sciences P.9/9/15 Job Code: PO Box 5248 Turramura NSW 2074 Email: adam@sullivan-es.com.au Due Date: Project No: SE_5_42_4 Sampler(s): M Project No: SE_5_42_4 Sampler(s): M N Custody seal intract? Released by: M Checked: Reco Sample cold? Date: 20/9/15< Date: M	20/a/15 TO: A/-C			Chickero			
S ulltvan Environmental Sciences / / PO Box 5248 T urramurra NSW 2074 Project No: SES_424 Project No: SES_424 Signature(s): Signature(s): No Agreement No: No Date: Date: 2a/a/155 Te cold? Date:	2			CUIRING	Container Size, Type, Preservative and Analysis	reservative	
PO Box 5248 T urramurra NSW 2074 Ph: 0400 500 264 Email: adam@sullivar Project No: SE-S-タンチ Sampler(s): Project Manager: A. Sullivi- Signature(s): Agreement No: Checked: NO Date: 2 の / の / Sumpler(s): Le cold? Date: 2 の / の / Sumpler(s):				CC	Container Identification	ation	
Turramurra NSW 2074 Ph: 0400 500 264 Email: adam@sullivar Project Nanager: 人、Sビス・ス・ス Sampler(s): Project Manager: 人、SULLi、 Signature(s): Agreement No: NO Beal intact? Released by: んんん・ Checked: NO Date: 2.4/a/LC Time:		Size					
Ph: 0400 500 264 Email: adam@sullivar Project No: SES_スタス4 Sampler(s): Project Manager: A. Sullivi- Signature(s): Agreement No: Agreement No: Checked: NO Date: 2d/d/r Time:		Type*					
Project No: SES_924 Sampler(s): Project Manager: A. SulliJ Signature(s): Agreement No: NO NO Date: 20/0/15 Time:	dam@sullivan-es.com.au	Preservative Code		1			
Agreement No: Released by: AMA Checked: Date: 201/a/15 Time:	". ALAN	Analytes	VI sport			- 1-	
Released by: MAUL			3	d	1		
t 1/1 -	Received by: Monion Date: 190918 Time: 1500		~ 8 / HAO ~ 8 / HAO	0/20	1919F1 10/20		
ntific	Number Comments	Total no	Tick required analytes	rtes			
28/9 Solid	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2			X		
1/ 532-0.8	1	1	×	X			
N 563_0.2	1	7	X	X			
V ACT	7	1	X				
29/9 29/9	1.1	2	×	×			1
11 1 595-0.5	-0.5	Z	X				
28/4 586-0.5	-0.5	ч			×		
11 596-1.2	-1.2	-	×				
29/9 287-1.0		2	X			Ĩ	
1 538-0.8	-0.8	2	X				
589-0.3	-0.3	Ч	X	×			
0-1-123 /1 //	0.1-	-			X		
Remarks: 0 53-10-0-9	6.9	2	XXX		~~~		
	TOTAL	22	101	4	3		
 Container Type and Preservative Codes: P = Neutral Plastic; Bottle; VC = Hydrochloric Acid Preserved Vial; VS = Sulfuric Ac 	* Container Type and Preservative Codes: P = Neutral Plastic; N = Nitric Acid Preserved; C = Sodium Hydroxide Preserved; J = Solvent Washed Acid Rinsed Acid Rinsed Acid Rinsed Glass Bottle; VC = Hydrochloric Acid Preserved Vial; VS = Sulfuric Acid Preserved Vial; BS = Sulfuric Acid Preserved Glass Bottle; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle	Preserved; . ilass Bottle; Z	= Solvent Washe = Zinc Acetate Pr	d Acid Rinsed eserved Bottle	lar; S = Solvent E = EDTA Pres	Washed Acid Rinsed erved Bottles; ST = S	Glass terile Bottle
Courter Job No: Specify Turnaround Time:			NOTE:	SAMPLES MA	NOTE: SAMPLES MAY CONTAIN DANGEROUS AND HAZARDOUS SUBSTANCES	NGEROUS	

1